Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover signaling pathway crucial to acute lung injury

01.02.2011
Potential therapeutic targets identified for deadly, untreatable lung disease

Researchers at National Jewish Health have discovered a signaling pathway that is crucial to the devastating effects of acute lung injury (ALI). The data, obtained from cells, animals and ALI patients, suggest several potential therapeutic targets. Experimental blockade of one of the targets significantly reduced flooding of the lungs that is the hallmark of ALI.

"Acute lung injury is a devastating disease, with 40 percent mortality and no beneficial therapies," said first author James Finigan, MD, Assistant Professor of Medicine at National Jewish Health. "Our study identifies several promising targets for therapy, including HER2, which is already targeted by existing breast-cancer medications."

About 200,000 people in the United States suffer acute lung injury (ALI) every year. It is caused by either direct injury to the lungs or as a result of other conditions, often pneumonia or systemic infection. In ALI, large amounts of protein-rich fluid flow from the capillaries into the lungs, leading to flooding of the airspaces and reduced ability to deliver oxygen to the blood. Severe ALI is often referred to as acute respiratory distress syndrome or ARDS. Currently there is no approved therapy for the disease. Care of ALI patients is supportive only, in which doctors try to maintain blood-oxygen levels. Approximately 40 percent of patients with ALI, or 90,000 people per year in the US, die.

Dr. Finigan and his colleagues had previously shown that HER2, a receptor involved in cell development and growth, participates in recovery of mice from chemically-induced lung injury. They hypothesized that it may also play a role in the earlier inflammatory phase of lung injury, which resembles ALI in mice. The researchers also knew that the inflammatory molecule interleukin-1â is a central player in ALI and the permeability of capillaries.

In a series of experiments in cell culture and animal models they connected interleukin-1â to HER2, which triggers a cascade of signals within epithelial cells. Those signals cause blood vessel walls to become permeable and allow the flood of fluid into the lung airspaces. When researchers blocked production of NRG-1, one of the molecules in the signaling pathway, they reduced flow of molecules through a cellular barrier by 52 percent.

The researches then examined lung fluid from ALI patients, and found heightened levels of NRG-1, adding clinical evidence to their data supporting an important role for this pathway. They published their findings January 19 in the online version of the Journal of Biological Chemistry

Two existing medications, herceptin and tykerb, already target a malfunctioning HER2 in some cases of breast-cancer. Several medications targeting ADAM17 are also in development.

"Our work suggests several very promising avenues of research that may finally bring help to ALI patients," said senior author Jeffrey Kern, MD, Professor of Medicine at National Jewish Health.

William Allstetter | EurekAlert!
Further information:
http://www.njhealth.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>