Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers discover how to shutdown cancer's powerful master protein

Weill Cornell research offers patients hope for new treatments for an aggressive and common lymphoma

The powerful master regulatory transcription factor called Bcl6 is key to the survival of a majority of aggressive lymphomas, which arise from the B-cells of the immune system. The protein has long been considered too complex to target with a drug since it is also crucial to the healthy functioning of many immune cells in the body, not just B cells gone bad.

But now, in the journal Nature Immunology, researchers at Weill Cornell Medical College report that it is possible to shut down Bcl6 in the cancer, known as diffuse large B-cell lymphoma (DLBCL), while not affecting its vital function in T cells and macrophages that are needed to support a healthy immune system.

"The finding comes as a very welcome surprise," says the study's lead investigator, Dr. Ari Melnick, Gebroe Family Professor of Hematology/Oncology and director of the Raymond and Beverly Sackler Center for Biomedical and Physical Sciences at Weill Cornell.

"This means the drugs we have developed against Bcl6 are more likely to be significantly less toxic and safer for patients with this cancer than we realized," says Dr. Melnick, who is also a hematologist-oncologist at NewYork-Presbyterian Hospital/Weill Cornell Medical Center.

If Bcl6 is completely inhibited, patients might suffer from systemic inflammation and atherosclerosis. Weill Cornell researchers conducted this new study to help clarify possible risks, as well as to understand how Bcl6 controls the various aspects of the immune system.

DLBCL is the most common subtype of non-Hodgkin lymphoma -- the seventh most frequently diagnosed cancer -- and many of these patients are resistant to currently available treatments.

"Scientists have been searching for the right answer to treat this difficult lymphoma, which, after initial treatment, can be at high risk of relapse and resistant to current therapies," Dr. Melnick says. "Believing that Bcl6 could not be targeted, some researchers have been testing alternative therapeutic approaches. This study strongly supports the notion of using Bcl6-targeting drugs."

In fact, the findings in this study were inspired from preclinical testing of two Bcl6-targeting agents that Dr. Melnick and his Weill Cornell colleagues have developed to treat DLBCLs. These experimental drugs are RI-BPI, a peptide mimic, and the small molecule agent 79-6.

Dr. Melnick says the discovery that a master regulatory transcription factor can be targeted offers implications beyond just treating DLBCL. Recent studies from Dr. Melnick and others have revealed that Bcl6 plays a key role in the most aggressive forms of acute leukemia, as well as certain solid tumors.

Transcription factors are responsible for either inhibiting or promoting the expression of genes, and master regulatory transcription factors are the equivalent of the CPU of a computer – their actions regulate thousands of genes in different kinds of cells. For example, Bcl6 can control the type of immune cell that develops in the bone marrow -- playing many roles in the development of B cells, T cells, macrophages and other cells -- including a primary and essential role in enabling B-cells to generate specific antibodies against pathogens.

"When cells lose control of Bcl6, lymphomas develop in the immune system. Lymphomas are 'addicted' to Bcl6, and therefore Bcl6 inhibitors powerfully and quickly destroy lymphoma cells," Dr. Melnick says.

The big surprise in the current study is that rather than functioning as a single molecular machine, Bcl6 instead seems to function more like a Swiss Army knife, using different tools to control different cell types. This multi-function paradigm could represent a general model for the functioning of other master regulatory transcription factors.

"In this analogy, the Swiss Army knife, or transcription factor, keeps most of its tools folded, opening only the one it needs in any given cell type," Dr. Melnick says. "For B cells, it might open and use the knife tool; for T cells, the cork screw; for macrophages, the scissors. The amazing thing from a medical standpoint is that this means that you only need to prevent the master regulator from using certain tools to treat cancer. You don't need to eliminate the whole knife," he says. "In fact, we show that taking out the whole knife is harmful since the transcription factor has many other vital functions that other cells in the body need."

Prior to these study results, it was not known that a master regulator could separate its functions so precisely.

"Now we know we can take out a specific tool -- to shut down a specific part of the protein -- that causes the disease we want to treat."

Researchers hope this will be a major benefit to the treatment of DLBCL and perhaps other disorders that are influenced by Bcl6 and other master regulatory transcription factors.

Study co-authors include Dr. Chuanxin Huang and Dr. Katerina Chatzi from the Division of Hematology and Oncology at Weil Cornell Medical College.

The research was funded by grants from the National Cancer Institute, The Burroughs Wellcome Foundation and the Chemotherapy Foundation. The research was initially supported by a March of Dimes Scholar Award and facilitated by the Sackler Center for Biomedical and Physical Sciences at Weill Cornell.

The Raymond and Beverly Sackler Center for Biomedical and Physical Sciences

The Raymond and Beverly Sackler Center for Biomedical and Physical Sciences of Weill Cornell Medical College brings together a multidisciplinary team of scientists for the purpose of catalyzing major advances in medicine. By harnessing the combined power of experimental approaches rooted in the physical and biological sciences, Sackler Center investigators can best accelerate the pace of discovery and translate these findings for the benefit of patients with various medical conditions, including but not limited to cancer.

Weill Cornell Medical College

Weill Cornell Medical College, Cornell University's medical school located in New York City, is committed to excellence in research, teaching, patient care and the advancement of the art and science of medicine, locally, nationally and globally. Physicians and scientists of Weill Cornell Medical College are engaged in cutting-edge research from bench to bedside, aimed at unlocking mysteries of the human body in health and sickness and toward developing new treatments and prevention strategies. In its commitment to global health and education, Weill Cornell has a strong presence in places such as Qatar, Tanzania, Haiti, Brazil, Austria and Turkey. Through the historic Weill Cornell Medical College in Qatar, the Medical College is the first in the U.S. to offer its M.D. degree overseas. Weill Cornell is the birthplace of many medical advances -- including the development of the Pap test for cervical cancer, the synthesis of penicillin, the first successful embryo-biopsy pregnancy and birth in the U.S., the first clinical trial of gene therapy for Parkinson's disease, and most recently, the world's first successful use of deep brain stimulation to treat a minimally conscious brain-injured patient. Weill Cornell Medical College is affiliated with NewYork-Presbyterian Hospital, where its faculty provides comprehensive patient care at NewYork-Presbyterian Hospital/Weill Cornell Medical Center. The Medical College is also affiliated with the Methodist Hospital in Houston. For more information, visit

Lauren Woods | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>