Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover new sex pheromone in fruit flies

17.07.2009
Female fruit flies are highly attractive to the males - as long as they are virginal. After mating, however, males are less willing to copulate with the females for many days.

A team of researchers from the University of Münster and Harvard Medical School in the USA have now discovered a substance that triggers this behaviour of avoiding the females. This pheromone (a chemical messenger that influences behaviour) is transferred from the male to the female during copulation and ensures that after successful copulation, the female is much less attractive to other males. The results have been published in the online edition of "Current Biology".

For chemical communication, insects use special hydrocarbon compounds that are presented on the surface of their body. These chemical messages are picked up by other insects through their sense of smell or are "tasted" via contact receptors on their legs - the same way that, for example, a human being tastes food using receptors on the tongue. An especially important role is played by the so-called sex pheromones that trigger or inhibit the sex drive. Although these messengers and their influence on mating behaviour in fruit flies have already been well examined, the chemical data have not, so far, been able to explain why male fruit flies avoid the females for days after copulation.

The prediction that there were other as yet unidentified messengers have now been confirmed by the results of the German-American team's work. Using modern mass spectrometry, the researchers were able to prove the existence of a large number of new compounds on the surface of fruit flies' bodies. The structures of these substances are characterised by a long hydrocarbon chain and one or more oxygen atoms. Both of these features make them less volatile and, as a result, less easily detected by the method of analysis mostly used so far: gas chromotography.

Using a technique developed at the University of Münster, whole insects were placed directly into a time-of-flight mass spectrometer. A fine beam of an ultraviolet laser scans the flies and evaporates the messengers from the surface of their bodies. In this process, some of the molecules that are detached are, at the same time, ionised - i.e. they are charged. As a result, these molecules can be manipulated with electric fields and the mass specific to each molecule can be measured in the mass spectrometer. In this way, the scientists can identify the substances.

One particular hydrocarbon compound is found in high concentration on the surface of male fruit flies' sex organs. This observation led the researchers to scrutinize the substance - called CH503 -more closely. The experiments concluded that CH503 is indeed transferred from the male to the female fruit fly during mating and its existence on the female can be demonstrated at least ten days later.

In a series of behavioural experiments, it was also shown that CH5O3 acts as a pheromone and actually discourages male fruit flies from mating. Virgin females that are normally highly attractive to males lose their allure when perfumed with CH503. "Our results were able to clarify a question relating to behavioural biology that had so far been unanswered," say the two main authors of the study, Dr. Joanne Yew from the Harvard Medical School and Dr. Klaus Dreisewerd from the Institute of Medical Physics and Biophysics at the University of Münster. "And that was: why are female fruit flies avoided for so long by possible mating partners after they copulated?"

Scientists suspect that avoiding a string of matings has benefits for fruit flies. The genetic investment of the males are transferred to the female unhindered and are not ousted by rivals, and the females do not waste any energy on unnecessary mating, but can rather busy themselves with looking for a suitable place to lay their eggs.

Reference:

Yew J.Y. et al. (2009): A New Male Sex Pheromone and Novel Cuticular Cues for Chemical Communication in Drosophila. Current Biology Online / doi:10.1016/j.cub.2009.06.037

Dr. Christina Heimken | idw
Further information:
http://www.uni-muenster.de
http://www.cell.com/current-biology/abstract/S0960-9822(09)01313-X

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>