Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover new sex pheromone in fruit flies

17.07.2009
Female fruit flies are highly attractive to the males - as long as they are virginal. After mating, however, males are less willing to copulate with the females for many days.

A team of researchers from the University of Münster and Harvard Medical School in the USA have now discovered a substance that triggers this behaviour of avoiding the females. This pheromone (a chemical messenger that influences behaviour) is transferred from the male to the female during copulation and ensures that after successful copulation, the female is much less attractive to other males. The results have been published in the online edition of "Current Biology".

For chemical communication, insects use special hydrocarbon compounds that are presented on the surface of their body. These chemical messages are picked up by other insects through their sense of smell or are "tasted" via contact receptors on their legs - the same way that, for example, a human being tastes food using receptors on the tongue. An especially important role is played by the so-called sex pheromones that trigger or inhibit the sex drive. Although these messengers and their influence on mating behaviour in fruit flies have already been well examined, the chemical data have not, so far, been able to explain why male fruit flies avoid the females for days after copulation.

The prediction that there were other as yet unidentified messengers have now been confirmed by the results of the German-American team's work. Using modern mass spectrometry, the researchers were able to prove the existence of a large number of new compounds on the surface of fruit flies' bodies. The structures of these substances are characterised by a long hydrocarbon chain and one or more oxygen atoms. Both of these features make them less volatile and, as a result, less easily detected by the method of analysis mostly used so far: gas chromotography.

Using a technique developed at the University of Münster, whole insects were placed directly into a time-of-flight mass spectrometer. A fine beam of an ultraviolet laser scans the flies and evaporates the messengers from the surface of their bodies. In this process, some of the molecules that are detached are, at the same time, ionised - i.e. they are charged. As a result, these molecules can be manipulated with electric fields and the mass specific to each molecule can be measured in the mass spectrometer. In this way, the scientists can identify the substances.

One particular hydrocarbon compound is found in high concentration on the surface of male fruit flies' sex organs. This observation led the researchers to scrutinize the substance - called CH503 -more closely. The experiments concluded that CH503 is indeed transferred from the male to the female fruit fly during mating and its existence on the female can be demonstrated at least ten days later.

In a series of behavioural experiments, it was also shown that CH5O3 acts as a pheromone and actually discourages male fruit flies from mating. Virgin females that are normally highly attractive to males lose their allure when perfumed with CH503. "Our results were able to clarify a question relating to behavioural biology that had so far been unanswered," say the two main authors of the study, Dr. Joanne Yew from the Harvard Medical School and Dr. Klaus Dreisewerd from the Institute of Medical Physics and Biophysics at the University of Münster. "And that was: why are female fruit flies avoided for so long by possible mating partners after they copulated?"

Scientists suspect that avoiding a string of matings has benefits for fruit flies. The genetic investment of the males are transferred to the female unhindered and are not ousted by rivals, and the females do not waste any energy on unnecessary mating, but can rather busy themselves with looking for a suitable place to lay their eggs.

Reference:

Yew J.Y. et al. (2009): A New Male Sex Pheromone and Novel Cuticular Cues for Chemical Communication in Drosophila. Current Biology Online / doi:10.1016/j.cub.2009.06.037

Dr. Christina Heimken | idw
Further information:
http://www.uni-muenster.de
http://www.cell.com/current-biology/abstract/S0960-9822(09)01313-X

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>