Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover root cause of blood vessel damage in diabetes

31.01.2011
A key mechanism that appears to contribute to blood vessel damage in people with diabetes has been identified by researchers at Washington University School of Medicine in St. Louis.

Blood vessel problems are a common diabetes complication. Many of the nearly 26 million Americans with the disease face the prospect of amputations, heart attack, stroke and vision loss because of damaged vessels.

Reporting in the Journal of Biological Chemistry, the Washington University researchers say studies in mice show that the damage appears to involve two enzymes, fatty acid synthase (FAS) and nitric oxide synthase (NOS), that interact in the cells that line blood vessel walls.

“We already knew that in diabetes there’s a defect in the endothelial cells that line the blood vessels,” says first author Xiaochao Wei, PhD. “People with diabetes also have depressed levels of fatty acid synthase. But this is the first time we’ve been able to link those observations together.”


Wei
Wei is a postdoctoral research scholar in the lab of Clay F. Semenkovich, MD, the Herbert S. Gasser Professor of Medicine, professor of cell biology and physiology and chief of the Division of Endocrinology, Metabolism and Lipid Research.

Wei studied mice that had been genetically engineered to make FAS in all of their tissues except the endothelial cells that line blood vessels. These so-called FASTie mice experienced problems in the vessels that were similar to those seen in animals with diabetes.

“It turns out that there are strong parallels between the complete absence of FAS and the deficiencies in FAS induced by lack of insulin and by insulin resistance,” Semenkovich says.

Comparing FASTie mice to normal animals, as well as to mice with diabetes, Wei and Semenkovich determined that mice without FAS, and with low levels of FAS, could not make the substance that anchors nitric oxide synthase to the endothelial cells in blood vessels.

“We’ve known for many years that to have an effect, NOS has to be anchored to the wall of the vessel,” Semenkovich says. “Xiaochao discovered that fatty acid synthase preferentially makes a lipid that attaches to NOS, allowing it to hook to the cell membrane and to produce normal, healthy blood vessels.”

In the FASTie mice, blood vessels were leaky, and in cases when the vessel was injured, the mice were unable to generate new blood vessel growth.

The actual mechanism involved in binding NOS to the endothelial cells is called palmitoylation. Without FAS, the genetically engineered mice lose NOS palmitoylation and are unable to modify NOS so that it will interact with the endothelial cell membrane. That results in blood vessel problems.


Semenkovich
“In animals that don’t have fatty acid synthase and normal nitric oxide synthase in endothelial cells, we saw a lot of leaky blood vessels,” Semenkovich explains. “The mice also were more susceptible to the consequences of infection, and they couldn’t repair damage that occurred — problems that also tend to be common in people with diabetes.”

In one set of experiments, the researchers interrupted blood flow in the leg of a normal mouse and in a FASTie mouse.

“The control animals regained blood vessel formation promptly,” Semenkovich says, “but that did not happen in the animals that were modified to be missing fatty acid synthase.”

It’s a long way, however, from a mouse to a person, so the researchers next looked at human endothelial cells, and they found that a similar mechanism was at work.

“Our findings strongly suggest that if we can use a drug or another enzyme to promote fatty acid synthase activity, specifically in blood vessels, it might be helpful to patients with diabetes,” Wei says. “We also have been able to demonstrate that palmitoylation of nitric oxide synthase is impaired in diabetes, and if we can find a way to promote the palmitoylation of NOS, even independent of fatty acid synthase, it may be possible to treat some of the vascular complications of diabetes.”

And it shouldn’t matter whether a person has type 1 diabetes and can’t manufacture insulin or the more common type 2 diabetes, in which a person becomes resistant to insulin.

“That’s one of the key findings,” Semenkovich says. “It won’t matter whether it’s an absence of insulin or resistance to insulin: both are associated with defects in FAS.”

Wei X, Schneider JG, Shenouda SM, Lee A, Towler DA, Chakravarthy MV, Vita JA, Semenkovich CF. De novo lipogenesis maintains vascular homeostasis through endothelial nitric-oxide synthase (eNOS) palmitoylation, Journal of Biological Chemistry, vol. 286(4), pp. 2933-2945. Jan. 28, 2011.

This work was supported by grants from the National Institute of Diabetes, Digestive and Kidney Diseases and the National Heart, Lung, and Blood Institute of the National Institutes of Health and by awards from the American Heart Association and the American Diabetes Association.

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked fourth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Jim Dryden | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht New technology offers fast peptide synthesis
28.02.2017 | Massachusetts Institute of Technology

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>