Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Rare Leukemia-Causing Protein

03.07.2012
Researchers at the University of Cincinnati Hoxworth Blood Center have discovered a new gene target for leukemia therapy.

These findings, slated for the July 26, 2012 print issue of Blood, the journal of the American Society of Hematology, could lead to cellular targets for a patient population that otherwise may not have desirable outcomes and could potentially stop the onset of leukemia before it begins.

A team led by Jose Cancelas, MD, PhD, an associate professor of pediatrics at the UC College of Medicine and director of the research division at Hoxworth Blood Center, found that by inhibiting in animal models the protein Vav3, which controls cell signaling, the development of this leukemia—known as BCR-ABL lymphoid leukemia—is delayed.

"Despite advances in the treatment of this disease, the outcome of patients with this type of leukemia is very poor because it develops resistance to standard therapies,” he says. "We found that the genetic deficiency of Vav3 delays the formation of leukemia by impairing the signals from BCR-ABL and the overproduction of leukemic cells. In doing this, it also allows the standardized therapies, or BCR-ABL inhibitors, to work.”

Cancelas says this finding could lead to new multi-targeted therapies where Vav3 activity is related to the formation of leukemia.

"In collaboration with Dr. Nicolas Nassar, associate professor of pediatrics at UC and a physician in the division of experimental hematology at Cincinnati Children’s Hospital Medical Center, we are now trying to find chemicals with Vav3 inhibitory activity,” he says. "With this knowledge, we may be able to develop a therapy that can greatly improve the lives of patients facing leukemia.”

Other authors of this multinational study are Kyung Hee Chang and Susan Dunn from Hoxworth Blood Center; and Yi Zheng, John Perentesis, Abel Sanchez-Aguilera, Amitava Sengupta, Malav Madhu, Ashley Ficker, Rebecca Santho and Ashley Kuenzi from Cincinnati Children’s. Collaborators also include David Williams (Boston Children’s Hospital, Harvard Medical School), Michael Deininger (University of Utah), Xose Bustelo (University of Salamanca, Spain) and Xabier Agirre (University of Navarra, Spain).

This study was funded by the National Heart, Lung and Blood Institute of the National Institutes of Health, the United States Department of Defense, Alex’s Lemonade Stand Foundation and Cancer Free Kids Foundation.

Continuation of this study has been recently funded by the Leukemia and Lymphoma Society of North America.

Katie Pence | EurekAlert!
Further information:
http://www.uc.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>