Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers discover protein that could help prevent the spread of cancer

A protein capable of halting the spread of breast cancer cells could lead to a therapy for preventing or limiting the spread of the disease.

"Cancer researchers want to design new therapeutic strategies in which the metastasis or spreading stage of cancer can be blocked," explains Andrew Craig, lead researcher and a professor in Queen's Department of Biochemistry and Cancer Research Institute. "Patients stand a much better chance of survival if the primary tumor is the only tumor that needs to be treated."

The regulatory protein identified by Dr Craig's team inhibits the spread of cancer cells by removing and breaking down an invasive enzyme on the surface of cancer cells. If it remains unchecked, this enzyme degrades and modifies surrounding tissues, facilitating the spread of cancer through the body.

Dr. Craig hopes that his team's findings may help develop more targeted therapies that have a specific inhibitory function on this enzyme that is implicated in certain metastatic cancers.

Traditional therapies that have been used to counteract the invasive nature of this particular enzyme also destroy other enzymes that are important for the body's normal physiological function.

The researchers examined a network of proteins that are responsible for controlling the shape of cancer cells. They focused specifically on parts of the cell that protrude into surrounding body tissues, allowing the cancer cell to degrade surrounding tissue barriers.

Normal cells also produce similar protrusions as part of a healthy physiological process that allows cells to move through body tissues during an immune response.

During the spread of cancer these normally healthy mechanisms are coopted by cancer cells, allowing the cancer to break through tissue boundaries and colonize distant tissues. This process of cancer spread is known as metastasis and is frequently the cause of cancer-related deaths.

This research, which was funded by the Canadian Breast Cancer Foundation, will be featured on the cover of the May issue of the Journal of Cell Science, one of the most prestigious international cell biology journals.

Christina Archibald | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>