Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover other enzyme critical to maintaining telomere length

13.11.2015

New method expected to speed understanding of short telomere diseases and cancer

Since the Nobel Prize-winning discovery of the enzyme telomerase in 1984, identifying other biological molecules that lengthen or shorten the protective caps on the ends of chromosomes has been slow going. Now, researchers at Johns Hopkins report uncovering the role of an enzyme crucial to telomere length and say the new method they used to find it should speed discovery of other proteins and processes that determine telomere length. Their results appear in the Nov. 24 issue of Cell Reports.


Telomeres glow at the end of chromosomes.

Credit: Hesed Padilla-Nash and Thomas Ried of the NIH

"We've known for a long time that telomerase doesn't tell the whole story of why chromosomes' telomeres are a given length, but with the tools we had, it was difficult to figure out which proteins were responsible for getting telomerase to do its work," says Carol Greider, Ph.D., the Daniel Nathans Professor and Director of Molecular Biology and Genetics in the Johns Hopkins Institute for Basic Biomedical Sciences. Greider won the 2009 Nobel Prize in Physiology or Medicine for the discovery of telomerase.

Figuring out exactly what's needed to lengthen telomeres has broad health implications, Greider notes, because shortened telomeres have been implicated in aging and in diseases as diverse as lung and bone marrow disorders, while overly long telomeres are linked to cancer. Because telomeres naturally shorten each time DNA is copied in preparation for cell division, cells need a well-tuned process to keep adding the right number of building blocks back onto telomeres over an organism's lifetime.

But until now researchers have been saddled with a limiting and time-consuming test for whether a given protein is involved in maintaining telomere length, a test that first requires blocking a suspected protein's action in lab-grown cells, then getting the cells to grow and divide for about three months so that detectable differences in telomere length can emerge. In addition to being time consuming, the test could not be used at all for proteins whose loss would kill the cells before the three-month mark.

To find a better tool, graduate student Stella Suyong Lee, working in Greider's laboratory, started with a concept used for measuring telomere length in yeast. The idea was to artificially cut mammalian cells' telomeres, then detect elongation by telomerase -- a test that would take less than a day, and could be performed even if the blocked proteins were needed for cells to divide. But making the transition from yeast to mammals involved a host of unforeseen technical difficulties, and the project took nearly five years. Greider credits Lee's persistence for its eventual success.

For their trial run of the new test, dubbed addition of de novo initiated telomeres (ADDIT), Greider's group examined an enzyme called ATM kinase. "ATM kinase was known to be involved in DNA repair, but there were conflicting reports about whether it had a role in telomere lengthening," says Greider. Her team blocked the enzyme in lab-grown mouse cells, and used ADDIT to find that it was indeed needed to lengthen telomeres. They verified the result using the old, three-month-long telomere test, and got the same result.

The team also found that in normal mouse cells, a drug that blocks an enzyme called PARP1 would activate ATM kinase and spur telomere lengthening. This finding offers a proof of principle for drug-based telomere elongation to treat short-telomere diseases, such as bone marrow failure, Greider says -- but she cautions that PARP1 inhibitor drug itself doesn't have the same telomere-elongating effect in human cells as it does in mouse cells.

Greider's group plans to use ADDIT to find out more about the telomere-lengthening biochemical pathway that ATM kinase is a part of, as well as other pathways that help determine telomere length. "The potential applications are very exciting," Lee says. "Ultimately ADDIT can help us understand how cells strike a balance between aging and the uncontrolled cell growth of cancer, which is very intriguing."

###

Other authors on the paper are Craig Bohrson, Alexandra Mims Pike and Sarah Jo Wheelan, all of Johns Hopkins University School of Medicine.

This study was funded by the National Institute on Aging (grant number R37AG009383), the Turock Fellowship, and a Commonwealth Foundation Grant.

Media Contact

Shawna Williams
shawna@jhmi.edu
410-955-8236

 @HopkinsMedicine

http://www.hopkinsmedicine.org 

Shawna Williams | EurekAlert!

Further reports about: ATM bone marrow chromosomes enzyme mouse cells telomere length telomeres

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>