Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Oldest Fossil Impression of a Flying Insect

15.10.2008
Tufts University student and a faculty lecturer uncover what they believe is the world's oldest known full-body impression of a primitive flying insect, a 300 million-year-old specimen from the Carboniferous Period. Surprise discovery made in a most unlikely place - behind a suburban strip mall.

While paleontologists may scour remote, exotic places in search of prehistoric specimens, Tufts researchers have found what they believe to be the world's oldest whole-body fossil impression of a flying insect in a wooded field behind a strip mall in North Attleboro, Mass.

During a recent exploration as part of his senior project, Richard J. Knecht, a Tufts geology major, and Jake Benner, a paleontologist and senior lecturer in the Geology Department, set out to hunt for fossils at a location they learned of while reading a master's thesis that had been written in 1929. With chisels and hammers, the team reached the shale and sandstone outcropping described in the paper. There they delicately picked away pieces of rock before reaching a section that yielded fossils. Just below the surface, they uncovered a fossilized impression of a flying insect.

Not just any fossil

It was not just any fossil. Knecht says it is the world's oldest known full-body impression of a primitive flying insect, a 300 million-year-old specimen from the Carboniferous Period. It is a rare find in the specialized world of ichnology, which is the study of fossilized animal tracks, impressions and trails to investigate behavior. Knecht says a preserved full-body impression of a flying insect from this or any previous period has never been discovered.

The fossil, Benner says, "captures a moment in time over 300 million years ago when a flying insect just happened to land on a damp, muddy surface leaving almost a perfect impression of its body behind."

Knecht and Benner presented the fossil at the Second International Congress on Ichnology, in Krakow, Poland last month. The pair will present other trace fossils from the site, including tracks of amphibians and precursors to reptiles, at the Annual Meeting of the Geological Society of America meeting in Houston later this month.

Paleontologists use fossilized remains of insect bodies to study anatomy and develop hypotheses about evolutionary processes. Typically the only evidence available for this type of work is remains of insect wings. Bodies of primitive flying insects are rarely preserved and therefore little is known about them. The North Attleboro fossil will provide researchers with evidence of how it moved once it landed on a surface, as well as its stance, position of its legs and details about its abdomen and thorax.

The impression is about three inches long and is imprinted on the flat side of a rock. The impression does not contain direct evidence of the insect having wings but Knecht and Benner say evidence suggests that it was a winged insect. According to Benner, the insect's anatomy and body plan are consistent with those of primitive flying insects. He also points out that "there are no walking tracks leading up to the body impression, indicating that it came from above."

Michael S. Engel, a leading entomologist at the University of Kansas, is working with Knecht and Benner to study the insect. He says that a preliminary inspection of the anatomy indicates that it may be related to the common mayfly. "We can tell from the imprint that it has a very squat position when it lands," Engel says. "Its legs are sprawled and its belly is pressed down. The only group that does that today is the mayfly."

Identifying the insect will also help the researchers to gain knowledge about the ecosystem of that period and what type of animals lived in it. The specimen may also advance understanding of insect flight and evolution from smaller, non-flying scurrying animals.

"Once we pin down what type of insect it is we can begin to think about the conditions, the climate and life that must have existed in the environment to support its life," says Knecht. "One focus is the insect itself. Another is the broader big picture of the world it lived in."

A moment 300 million years ago

The insect lived in the Pennsylvanian Era - the second half of the Carboniferous Period - and dates back to about 310 million years. Nearby sites of similar age exist in the Canadian Maritimes, Pennsylvania and the southeastern United States. There are no other active explorations of Pennsylvanian rock formation in New England.

Knecht learned of the site while conducting research on sedimentary rocks in the region for his senior thesis. He found an obscure reference to it in an unpublished master's thesis on amphibian trackways that was originally written by a Brown University student in 1929. The paper was published a year later in the Geological Society of America Bulletin.

Knecht, 30, is a senior at Tufts who enrolled through Tufts' Resumed Education for Adult Learners program (REAL), following coursework at the University of Massachusetts-Boston. He is a native of Chatham, Mass. At Tufts he has received four grants and fellowship money to support his work from the Paleontological Society, the Geological Society of America and Tufts University.

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate and professional programs across the university's schools is widely encouraged.

Alexander Reid | Newswise Science News
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht New technology offers fast peptide synthesis
28.02.2017 | Massachusetts Institute of Technology

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>