Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers discover new mechanism in adrenal gland tumors


Scientists at the Helmholtz Zentrum München have elucidated a mechanism that is responsible for the development of adrenal gland tumors. They discovered that the BMP7 protein plays a key role in this process and that it could be a possible target for future treatments. The results have been published in the journal ‘Oncotarget’.

Specifically, the team headed by Dr. Natalia Pellegata of the Institute of Pathology (PATH) at the Helmholtz Zentrum München conducted a study on pheochromocytomas (PCCs). Pheochromocytomas are active adrenal gland tumors, the majority of which are benign.

Ines Leinhäuser and Dr. Natalia Pellegata

Source: Helmholtz Zentrum München (HMGU)

However, if they become malignant and spread to other tissues, the prognosis for these patients is poor. This is mainly due to the fact that currently the only treatment available for PCCs is their surgical removal. In order to develop new treatment therapies, the researchers initially examined the molecular mechanisms behind this disease.

Particularly high incidence of protein BMP7 in PCC samples

“Our initial data from patient samples shows that the growth factor BMP7 is found frequently overexpressed in samples from PCC patients,” recalls first author Ines Leinhäuser. In further studies, the Helmholtz scientists examined the possible consequences of a higher level of this protein. In various functional tests, they were able to prove that elevated levels of BMP7 promote PCC cell division and cell migration. Conversely, if the protein is targeted for knockdown, this results in less invasive cells.

Active substances that target the BMP7 signaling pathway kill off tumor cells

The researchers identified a particular signaling pathway as the cause of this effect on the cells. “The PI3K/mTOR pathway is activated by the BMP7 protein and conveys signals for the cells to divide as well as to migrate,” explains team leader Pellegata. In order to verify this mechanism and to test potential future treatments, the team used two molecules.

One molecule inhibits the signal transmission of BMP7; the other blocks the PI3K/mTOR downstream signaling pathway. “In an animal model of PCC we were able to show that treating the tumors with substances inhibiting BMP signaling can lead to an increase in apoptosis*,” Pellegata adds. Although further tests will be needed in order to confirm these results, the cancer researchers hope that they have found a new approach to future treatments.

Further information

* Apoptosis is the process of programmed cell death. It serves to remove degenerate or potentially harmful cells. Apoptosis also occurs during development, for example during the regulation of cell numbers, and thus influences tissue size or the regression of skin webbing.

Original publication:
Leinhaeuser, I. et al. (2015). Oncogenic features of the bone morphogenic protein 7 (BMP7) in pheochromocytoma, Oncotarget

As German Research Center for Environmental Health, Helmholtz Zentrum München pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes mellitus and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München has about 2,300 staff members and is headquartered in Neuherberg in the north of Munich. Helmholtz Zentrum München is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members.

The Institute of Pathology (PATH) contributes to the identification and characterization of molecular mechanisms and pathways, which are relevant for disease development and progression. We endeavor to understand the interplay between environment and genetic, and to identify novel targets for therapeutic intervention.

Contact for the media:
Department of Communication, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Phone: +49 89 3187 2238 - Fax: +49 89 3187 3324 – E-mail:

Scientific contact at Helmholtz Zentrum München:
Dr. Natalia Pellegata, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg - Phone +49 89 3187 2633 - E-mail:

Weitere Informationen:[]=4912&path[]=12027 - Link to the publication - Press releases Helmholtz Zentrum München - Institute of Pathology

Kommunikation | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: BMP7 Environmental Health Helmholtz Pathology signaling pathway tumors

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>