Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover new mechanism in adrenal gland tumors

28.08.2015

Scientists at the Helmholtz Zentrum München have elucidated a mechanism that is responsible for the development of adrenal gland tumors. They discovered that the BMP7 protein plays a key role in this process and that it could be a possible target for future treatments. The results have been published in the journal ‘Oncotarget’.

Specifically, the team headed by Dr. Natalia Pellegata of the Institute of Pathology (PATH) at the Helmholtz Zentrum München conducted a study on pheochromocytomas (PCCs). Pheochromocytomas are active adrenal gland tumors, the majority of which are benign.


Ines Leinhäuser and Dr. Natalia Pellegata

Source: Helmholtz Zentrum München (HMGU)

However, if they become malignant and spread to other tissues, the prognosis for these patients is poor. This is mainly due to the fact that currently the only treatment available for PCCs is their surgical removal. In order to develop new treatment therapies, the researchers initially examined the molecular mechanisms behind this disease.

Particularly high incidence of protein BMP7 in PCC samples

“Our initial data from patient samples shows that the growth factor BMP7 is found frequently overexpressed in samples from PCC patients,” recalls first author Ines Leinhäuser. In further studies, the Helmholtz scientists examined the possible consequences of a higher level of this protein. In various functional tests, they were able to prove that elevated levels of BMP7 promote PCC cell division and cell migration. Conversely, if the protein is targeted for knockdown, this results in less invasive cells.

Active substances that target the BMP7 signaling pathway kill off tumor cells

The researchers identified a particular signaling pathway as the cause of this effect on the cells. “The PI3K/mTOR pathway is activated by the BMP7 protein and conveys signals for the cells to divide as well as to migrate,” explains team leader Pellegata. In order to verify this mechanism and to test potential future treatments, the team used two molecules.

One molecule inhibits the signal transmission of BMP7; the other blocks the PI3K/mTOR downstream signaling pathway. “In an animal model of PCC we were able to show that treating the tumors with substances inhibiting BMP signaling can lead to an increase in apoptosis*,” Pellegata adds. Although further tests will be needed in order to confirm these results, the cancer researchers hope that they have found a new approach to future treatments.

Further information

Background:
* Apoptosis is the process of programmed cell death. It serves to remove degenerate or potentially harmful cells. Apoptosis also occurs during development, for example during the regulation of cell numbers, and thus influences tissue size or the regression of skin webbing.

Original publication:
Leinhaeuser, I. et al. (2015). Oncogenic features of the bone morphogenic protein 7 (BMP7) in pheochromocytoma, Oncotarget

As German Research Center for Environmental Health, Helmholtz Zentrum München pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes mellitus and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München has about 2,300 staff members and is headquartered in Neuherberg in the north of Munich. Helmholtz Zentrum München is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members.

The Institute of Pathology (PATH) contributes to the identification and characterization of molecular mechanisms and pathways, which are relevant for disease development and progression. We endeavor to understand the interplay between environment and genetic, and to identify novel targets for therapeutic intervention.

Contact for the media:
Department of Communication, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Phone: +49 89 3187 2238 - Fax: +49 89 3187 3324 – E-mail: presse@helmholtz-muenchen.de

Scientific contact at Helmholtz Zentrum München:
Dr. Natalia Pellegata, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Pathology, Ingolstädter Landstr. 1, 85764 Neuherberg - Phone +49 89 3187 2633 - E-mail: natalia.pellegata@helmholtz-muenchen.de

Weitere Informationen:

http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=view&path[]=4912&path[]=12027 - Link to the publication
http://www.helmholtz-muenchen.de/en/news/press-releases/2015/index.html - Press releases Helmholtz Zentrum München
http://www.helmholtz-muenchen.de/en/path/index.html - Institute of Pathology

Kommunikation | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Further reports about: BMP7 Environmental Health Helmholtz Pathology signaling pathway tumors

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>