Researchers discover new Ebola-fighting antibodies in blood of outbreak survivor

This image shows a key Ebola virus protein and vulnerable sites where antibodies (in color) can bind and neutralize it. Image by Hannah Turner and Daniel Murin, courtesy of The Scripps Research Institute

The antibodies, isolated from the blood of a survivor of the 2014 Ebola outbreak and the largest panel reported to date, could guide the development of a vaccine or therapeutic against Ebola. The new study also revealed a previously unknown site of vulnerability in the structure of the deadly virus.

“Our Science paper describes the first in-depth view into the human antibody response to Ebola virus,” said team leader Laura Walker, senior scientist at Adimab, LLC, and an alumna of TSRI's PhD program. “Within weeks of receiving a blood sample from a survivor of the 2014 Ebola outbreak, we were able to isolate and characterize over 300 monoclonal antibodies that reacted with the Ebola virus surface glycoprotein.”

Co-authors of the paper included TSRI lab heads Professor Erica Ollmann Saphire (also co-director of the Global Virus Network Center of Excellence at TSRI); Associate Professor Andrew Ward; and Professor Dennis Burton (also scientific director of the International AIDS Vaccine Initiative's (IAVI) Neutralizing Antibody Center and the National Institutes of Health (NIH)-sponsored Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), both at TSRI).

The study was published February 18, 2016, in the journal Science.

Searching for Powerful Antibodies

Studies at TSRI and other institutions have shown that Ebola virus has several weak points in its structure where antibodies can target and neutralize the virus. However, the immune system typically needs a long period of trial and error to produce the right antibodies against these sites, so researchers have been working with only a small library of anti-Ebola options.

Despite this limited library, researchers have had some success in designing antibody “cocktails” that target several weak points at once. One treatment in development, Mapp Biopharmaceutical Inc.'s ZMapp™, is a cocktail of three mouse antibodies modified to resemble human antibodies. This treatment was successful in primate trials and used as an experimental human treatment in the 2014 outbreak.

With ZMapp showing promise, researchers are searching for additional antibodies to fight Ebola.

“These types of antibodies could be developed into different types of antibody cocktails or therapeutics, in addition to advancing vaccine design,” said Ward.

Bringing New Technologies Together

The new study took advantage of a recently launched single B cell isolation platform from Adimab, which researchers used to quickly find more than 300 antibodies that reacted with the Ebola virus surface glycoprotein–the viral structure that fuses with host cells.

Researchers at TSRI and the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) then performed an in-depth analysis of the therapeutic potential of these antibodies. Crucial to this effort was the TSRI development of antigens–molecules that can “fish” for antibodies in blood serum.

“That's where our expertise came into play,” said the study's first author Zachary Bornholdt, an assistant professor in the Ollmann Saphire lab at the time of the study and current associate director of antibody discovery at Mapp Biopharmaceutical.

Remarkably, 77 percent of the antibodies in the new study showed the potential to neutralize Ebola virus, and several antibodies demonstrated significant protection against the virus in mouse models. “We identified three highly protective antibodies that each targeted a different site–or epitope–on the Ebola virus glycoprotein,” Bornholdt said.

Because these are human antibodies, not modified mouse antibodies, researchers potentially could quickly use them to design a treatment. Furthermore, with these new antibodies available, researchers might be able to design secondary treatments in case the Ebola virus mutates to escape other treatments.

Next, the researchers used an imaging technique, called electron microscopy, to investigate exactly where the antibodies were binding with Ebola virus. The imaging, led by the Ward lab at TSRI, revealed a previously unknown Achilles heel on the virus: a spot at the base of the Ebola virus surface glycoprotein.

While Ebola virus mutates rapidly, this site is part of the virus's larger machinery and tends to stay the same. This means targeting this spot could neutralize many strains of Ebola.

To encourage further studies, the researchers have made the genetic sequences of these antibodies available to the research community.

Stopping Emerging Diseases

The researchers believe the techniques in this study could be used to find treatments for other emerging diseases, such as Zika virus.

Bornholdt thinks of the new study as a test case. In just over a year, the combination of Adimab and TSRI methods led to the discovery of promising antibodies–and future experiments should move even more quickly now that researchers have experience with these tools.

“With other outbreaks, we could take blood samples from the first wave of survivors and potentially produce a therapeutic rapidly,” said Bornholdt. “That's the long-term goal.”

###

In addition to Walker, Ollmann Saphire, Ward, Burton and Bornholdt, authors of the study, “Isolation of potent neutralizing antibodies from a survivor of the 2014 Ebola virus outbreak,” were Hannah L. Turner, Charles D. Murin, Devin Sok, Marnie L. Fusco and Kathleen B.J. Pommert of TSRI; Wen Li, Eric Krauland, Tillman U. Gerngross and Dane K. Wittrup of Adimab; Colby A. Souders, Lisa A. Cavacini, Heidi L. Smith, Mark Klempner and Keith A. Reimann of MassBiologics; Ashley E. Piper, Arthur Goff, Joshua D. Shamblin, Suzanne E. Wollen, Thomas R. Sprague and Pamela J. Glass of USAMRIID. To view the abstract, see http://science.sciencemag.org/content/early/2016/02/17/science.aad5788.abstract

This research was supported by the NIH (grants R01 AI067927, U19 AI109762), the NIH National Institute of Allergy and Infectious Diseases Center for Excellence in Translational Research (grant U19AI109762), a predoctoral fellowship from the National Science Foundation, the Defense Advanced Research Projects Agency (DARPA-BAA-13-03) and CHAVI-ID (grant UM1AI100663).

Media Contact

Madeline McCurry-Schmidt
madms@scripps.edu
858-784-9254

 @scrippsresearch

http://www.scripps.edu 

Media Contact

Madeline McCurry-Schmidt EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors