Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover new Ebola-fighting antibodies in blood of outbreak survivor

22.02.2016

A research team that included scientists from The Scripps Research Institute (TSRI) has identified a new group of powerful antibodies to fight Ebola virus.

The antibodies, isolated from the blood of a survivor of the 2014 Ebola outbreak and the largest panel reported to date, could guide the development of a vaccine or therapeutic against Ebola. The new study also revealed a previously unknown site of vulnerability in the structure of the deadly virus.


This image shows a key Ebola virus protein and vulnerable sites where antibodies (in color) can bind and neutralize it.

Image by Hannah Turner and Daniel Murin, courtesy of The Scripps Research Institute

"Our Science paper describes the first in-depth view into the human antibody response to Ebola virus," said team leader Laura Walker, senior scientist at Adimab, LLC, and an alumna of TSRI's PhD program. "Within weeks of receiving a blood sample from a survivor of the 2014 Ebola outbreak, we were able to isolate and characterize over 300 monoclonal antibodies that reacted with the Ebola virus surface glycoprotein."

Co-authors of the paper included TSRI lab heads Professor Erica Ollmann Saphire (also co-director of the Global Virus Network Center of Excellence at TSRI); Associate Professor Andrew Ward; and Professor Dennis Burton (also scientific director of the International AIDS Vaccine Initiative's (IAVI) Neutralizing Antibody Center and the National Institutes of Health (NIH)-sponsored Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), both at TSRI).

The study was published February 18, 2016, in the journal Science.

Searching for Powerful Antibodies

Studies at TSRI and other institutions have shown that Ebola virus has several weak points in its structure where antibodies can target and neutralize the virus. However, the immune system typically needs a long period of trial and error to produce the right antibodies against these sites, so researchers have been working with only a small library of anti-Ebola options.

Despite this limited library, researchers have had some success in designing antibody "cocktails" that target several weak points at once. One treatment in development, Mapp Biopharmaceutical Inc.'s ZMapp™, is a cocktail of three mouse antibodies modified to resemble human antibodies. This treatment was successful in primate trials and used as an experimental human treatment in the 2014 outbreak.

With ZMapp showing promise, researchers are searching for additional antibodies to fight Ebola.

"These types of antibodies could be developed into different types of antibody cocktails or therapeutics, in addition to advancing vaccine design," said Ward.

Bringing New Technologies Together

The new study took advantage of a recently launched single B cell isolation platform from Adimab, which researchers used to quickly find more than 300 antibodies that reacted with the Ebola virus surface glycoprotein--the viral structure that fuses with host cells.

Researchers at TSRI and the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) then performed an in-depth analysis of the therapeutic potential of these antibodies. Crucial to this effort was the TSRI development of antigens--molecules that can "fish" for antibodies in blood serum.

"That's where our expertise came into play," said the study's first author Zachary Bornholdt, an assistant professor in the Ollmann Saphire lab at the time of the study and current associate director of antibody discovery at Mapp Biopharmaceutical.

Remarkably, 77 percent of the antibodies in the new study showed the potential to neutralize Ebola virus, and several antibodies demonstrated significant protection against the virus in mouse models. "We identified three highly protective antibodies that each targeted a different site--or epitope--on the Ebola virus glycoprotein," Bornholdt said.

Because these are human antibodies, not modified mouse antibodies, researchers potentially could quickly use them to design a treatment. Furthermore, with these new antibodies available, researchers might be able to design secondary treatments in case the Ebola virus mutates to escape other treatments.

Next, the researchers used an imaging technique, called electron microscopy, to investigate exactly where the antibodies were binding with Ebola virus. The imaging, led by the Ward lab at TSRI, revealed a previously unknown Achilles heel on the virus: a spot at the base of the Ebola virus surface glycoprotein.

While Ebola virus mutates rapidly, this site is part of the virus's larger machinery and tends to stay the same. This means targeting this spot could neutralize many strains of Ebola.

To encourage further studies, the researchers have made the genetic sequences of these antibodies available to the research community.

Stopping Emerging Diseases

The researchers believe the techniques in this study could be used to find treatments for other emerging diseases, such as Zika virus.

Bornholdt thinks of the new study as a test case. In just over a year, the combination of Adimab and TSRI methods led to the discovery of promising antibodies--and future experiments should move even more quickly now that researchers have experience with these tools.

"With other outbreaks, we could take blood samples from the first wave of survivors and potentially produce a therapeutic rapidly," said Bornholdt. "That's the long-term goal."

###

In addition to Walker, Ollmann Saphire, Ward, Burton and Bornholdt, authors of the study, "Isolation of potent neutralizing antibodies from a survivor of the 2014 Ebola virus outbreak," were Hannah L. Turner, Charles D. Murin, Devin Sok, Marnie L. Fusco and Kathleen B.J. Pommert of TSRI; Wen Li, Eric Krauland, Tillman U. Gerngross and Dane K. Wittrup of Adimab; Colby A. Souders, Lisa A. Cavacini, Heidi L. Smith, Mark Klempner and Keith A. Reimann of MassBiologics; Ashley E. Piper, Arthur Goff, Joshua D. Shamblin, Suzanne E. Wollen, Thomas R. Sprague and Pamela J. Glass of USAMRIID. To view the abstract, see http://science.sciencemag.org/content/early/2016/02/17/science.aad5788.abstract

This research was supported by the NIH (grants R01 AI067927, U19 AI109762), the NIH National Institute of Allergy and Infectious Diseases Center for Excellence in Translational Research (grant U19AI109762), a predoctoral fellowship from the National Science Foundation, the Defense Advanced Research Projects Agency (DARPA-BAA-13-03) and CHAVI-ID (grant UM1AI100663).

Media Contact

Madeline McCurry-Schmidt
madms@scripps.edu
858-784-9254

 @scrippsresearch

http://www.scripps.edu 

Madeline McCurry-Schmidt | EurekAlert!

Further reports about: Ebola virus Infectious Diseases Saphire TSRI human antibodies outbreak structure

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>