Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover New Molecular Pathway for Targeting Cancer, Disease

22.07.2009
A UCLA study has identified a way to turn off a key signaling pathway involved in physiological processes that can also stimulate the development of cancer and other diseases. The findings may lead to new treatments and targeted drugs using this approach.

In the study, which is currently available in the online edition of the journal Molecular Endocrinology, scientists found that by activating a receptor in cells called the liver X receptor (LXR), they were able to inhibit the hedgehog (Hh) signaling pathway, which is involved in the maintenance of tissue integrity and stem cell generation. When stimulated in an unregulated manner, however, the Hh pathway can also cause cancers of the brain, lung, blood, prostate, skin and other tissues.

Blocking such unregulated stimulation of the Hh pathway had previously been shown in animal studies to prevent cancers, according to the researchers. How LXR was able to inhibit tumor cell growth by impeding the Hh pathway was previously unknown.

"Our finding shows that activation of LXR signaling is a novel strategy for inhibiting Hh pathway activity and for targeting various cell types, including cancer cells, which may provide important clues as to how we might be able to intervene with tumor formation," said Farhad Parhami, a professor of medicine at the David Geffen School of Medicine at UCLA and the study's principal investigator.

During the study, researchers performed various tests activating LXR receptors in cells and found that specific gene expression induced by the Hh pathway could be inhibited. This finding was also confirmed in mice.

"Since Hh signaling plays a major role in other physiological and pathological processes, we may be able to impact other diseases as well," Parhami said.

Dr. William Matsui of Johns Hopkins Medical Institute, an expert on Hh signaling in cancer development, noted the importance of the UCLA study and its significance for the next stages of research — finding a pharmaceutical drug or substance molecule to act as an agonist, which would stimulate LXR activity to inhibit aberrant Hh signaling.

"The hedgehog Hh signaling pathway is an important regulator of tumor formation, and these findings suggest that LXR agonists may be novel treatments for a wide variety of human cancers," Matsui said.

According to researchers, utilizing this new treatment pathway could have broad applications in the cancer field.

"This discovery identifies an entirely new and unexpected mechanism of hedgehog pathway modulation," said study author Dr. James A. Waschek, an expert on Hh signaling in brain tumor development and a professor of psychiatry and biobehavioral sciences at the David Geffen School of Medicine at UCLA. "This has great potential in offering other options, because current hedgehog pathway inhibitors have severe side effects which preclude their use in many cancer patients, especially children."

Waschek also noted that this discovery may reveal new details on how Hh signals within the cell, which is currently poorly understood.

The next stage of the research will focus on activating the LXR pathway using various pharmacological molecules to inhibit tumor formation. Matsui will be a collaborator in this follow-up research.

In addition, the team has started a medicinal chemistry program to design and test small molecules that activate the LXR pathway while avoiding the adverse effects that may be caused when LXR is activated in tissues such as the liver.

The study was funded by the National Institutes of Health and the American Heart Association.

Other authors include Woo-Kyun Kim and Vicente Meliton from the UCLA Department of Medicine; Peter Tontonoz from the UCLA Department of Pathology and Laboratory Medicine and the Howard Hughes Medical Institute; Kye Won Park from the department of food science and biotechnology at Korea's Sungkyunkwan University; Cynthia Hong from the Howard Hughes Medical Institute and the David Geffen School of Medicine at UCLA; Pawel Niewiadomski from the UCLA Department of Psychiatry; and Sotirios Tetradis from the UCLA School of Dentistry.

Rachel Champeau | Newswise Science News
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>