Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Molecular Gatekeeper in Enzyme

18.02.2009
Researchers from Wageningen University, along with colleagues from the University of Groningen and the University of Pavia (Italy), have unravelled the mechanism that plays a role in the natural production of vitamin C. In this process, a molecular gatekeeper blocks the entrance to the reaction centre of a crucial enzyme.

The article in which the team reports its finding has been declared Paper of the Week by the Journal of Biological Chemistry, an honour given to only one in every hundred articles.

The biological production of vitamin C in plants, fungi and many animals is a complicated process that involves enzymes. A large group of these catalysts need oxygen to function well. In plants, a chemical, cytochrome C, replaces the function of oxygen. Cytochrome C or oxygen ensures that the co-factor flavin in the enzyme's action centre is brought back to its original state after reaction. Because of this restoration, the enzyme is ready for a new reaction.

The research team wondered why the one group of enzymes reacted with oxygen and the other, closely related group did not. How does the oxygen reach the centre of the enzyme, which consists of about 500 hundred linked building blocks (amino acids) of different sizes and forms. This string of building blocks is, as it were, bunched up into a little lump with 'holes, caverns and tunnels' in between. Oxygen has to seep through this little lump or clear a path through the tangle of amino acids in order to penetrate the hidden flavin in the centre.

Imagine, the researchers said, that in some enzymes oxygen can reach the enzyme's centre through tunnels and holes. You should then be able to discover the route using the structure. Unfortunately, there was no crystalline structure of the enzyme in question on hand. There was, however, one other possibility. By laying side by side all of the individual building blocks of the enzymes that react with oxygen and those that do not, the differences should become clear.

Comparing both analyses brought a subtle difference to light. Only one building block, number 113, at the end of a possible route turned out to be a bit different. This difference relates to the amino acid alanine. When alanine was replaced by the smaller building block glycine at that position, it turned out that the enzyme was suddenly oxygen permeable. And not just a little bit. The difference is so large it's as if a dam has burst: a factor of 400.

How is it possible that one building block in a construction of 500 blocks can have so much effect? The researchers support the tunnel theory: the building block alanine has four different protrusions, while glycine has only three. Alanine's extra protrusion, a methyl group, blocks the tunnel and prevents oxygen from penetrating the centre. At this site, alanine works as a gatekeeper and it keeps the door tightly shut.

But, why isn't the gate just simply open? Evidently, having a strict gatekeeper has its advantages. It turns out that the aggressive substance hydrogen peroxide ('domestic bleach') forms in the reaction with oxygen. Hydrogen peroxide accelerates the ageing of cells and a plant, which makes a lot of vitamin C, does not like this.

The way is now open to prepare vitamin C in a natural way. However, the chemical route already exists, is cheap and yields an identical product. The deciphered mechanism is, however, also applicable to similar biochemical reactions, for example, the preparation of vanilla. Additionally, the deciphered process can mean a step forward in synthetic biology in which products that do not occur or hardly occur in nature can be produced in a natural way.

Jac Niessen | alfa
Further information:
http://www.wur.nl
http://www.wur.nl/UK/newsagenda/news/Gatekeeper090216.htm

More articles from Life Sciences:

nachricht New type of photosynthesis discovered
17.06.2018 | Imperial College London

nachricht New ID pictures of conducting polymers discover a surprise ABBA fan
17.06.2018 | University of Warwick

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Scientists predict a new superhard material with unique properties

18.06.2018 | Materials Sciences

Squeezing light at the nanoscale

18.06.2018 | Physics and Astronomy

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>