Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Missing Link in Cell Mitosis: The Role of Protein in Controlling Cell Division is Unveiled

22.07.2010
A major discovery, led by researchers from The George Washington University Medical Center, promises to revolutionize the way scientists think about key aspects of cellular lifecycle and offers a new avenue for cancer researchers to explore in their quest to one day slow down the progression of cancer.

The discovery, reported in the article “Arpc 1b, a centrosomal protein, is both an activator and substrate of Aurora A,” furthers the science world’s understanding of what happens during the fundamental process of mitosis, when cells divide. The article was published in the current issue of The Journal of Cell Biology.

“This represents a crucial moment when the division of genetic material is still equally distributed. An even exchange is critical for stable genetic changes,” said Rakesh Kumar, Ph.D., chair of the GW Department of Biochemistry and Molecular Biology. In mitosis, cells begin to divide and genetic material coalesces around separate poles to form new cells. If all goes well that material is evenly distributed and two genetically identical “daughter cells” are formed. If something goes awry, however, it can result in the cascading production of aberrant cells with unequal and less ordered DNA and possibly cancer.

Lead authors Poonam R. Molli, Ph.D., ex-postdoctoral fellow, and Da-Qiang Li, M.D., assistant research professor, from GW’s Department of Biochemistry and Molecular Biology, have identified a protein, Arpc 1b, that serves as both an activator as well as a substrate for Aurora A, an enzyme which plays a central role in cellular reproduction in normal cells but is overexpressed in several cancers. This represents perhaps the earliest step in mitosis and serves as the missing link regarding the role this protein plays in starting the cell cycle and what keeps the process in balance. The authors discovered that Arpc1b also exists as a stand alone protein and believe that it might also play an independent role outside its established contribution to actin machinery.

More than just an observation of how cells divide, this discovery also offers a potential target for pharmaceutical therapy. Both Aurora A and Arpc1b are over-expressed in breast cancers. Pharmaceutical inhibitors targeting Aurora A are currently available and thus, could be combined with other future targeting strategies. The researchers discovered that an over-expression of Arpc1b promotes tumorigenic properties of breast cancer cells. Scientists believe that if they can someday find a means of suppressing the activity of Arpc 1b in cancer cell, the balance could be restored to this dynamic yet tightly regulated biological event.

“This discovery is the result of persistence and the commitment to scientific breakthrough,” said Dr. Kumar. “Asking a question and staying involved until you find the answer to close the loop is critical in scientific discovery.” In this case the earliest piece of data used here was obtained in 2001.

To learn more about this research, view The Journal of Cell Biology article: http://jcb.rupress.org/content/early/2010/06/30/jcb.200908050.full

About The George Washington University Medical Center
The George Washington University Medical Center is an internationally recognized interdisciplinary academic health center that has consistently provided high-quality medical care in the Washington, D.C. metropolitan area since 1824. The Medical Center comprises the School of Medicine and Health Sciences, the 11th oldest medical school in the country; the School of Public Health and Health Services, the only such school in the nation’s capital; GW Hospital, jointly owned and operated by a partnership between The George Washington University and a subsidiary of Universal Health Services, Inc.; and The GW Medical Faculty Associates, an independent medical practice with nearly 550 physicians in 47 clinical specialties.

Anne Banner | Newswise Science News
Further information:
http://www.gwumc.edu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>