Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover method to neutralize tumor growth in embryonic stem cell therapy

06.05.2009
Researchers at the Hebrew University of Jerusalem have discovered a method to potentially eliminate the tumor-risk factor in utilizing human embryonic stem cells. Their work paves the way for further progress in the promising field of stem cell therapy.

Human embryonic stem cells are theoretically capable of differentiation to all cells of the mature human body (and are hence defined as "pluripotent").

This ability, along with the ability to remain undifferentiated indefinitely in culture, make regenerative medicine using human embryonic stem cells a potentially unprecedented tool for the treatment of various diseases, including diabetes, Parkinson’s disease and heart failure.

A major drawback to the use of stem cells, however, remains the demonstrated tendency of such cells to grow into a specific kind of tumor, called teratoma, when they are implanted in laboratory experiments into mice. It is assumed that this tumorigenic feature will be manifested upon transplantation to human patients as well. The development of tumors from embryonic stem cells is especially puzzling given that these cells start out as completely normal cells.

A team of researchers at the Stem Cell Unit in the Department of Genetics at the Silberman Institute of Life Sciences at the Hebrew University has been working on various approaches to deal with this problem.

In their latest project, the researchers analyzed the genetic basis of tumor formation from human embryonic stem cells and identified a key gene that is involved in this unique tumorigenicity. This gene, called survivin, is expressed in most cancers and in early stage embryos, but it is almost completely absent from mature normal tissues.

The survivin gene is especially highly expressed in undifferentiated human embryonic stem cells and in their derived tumors. By neutralizing the activity of survivin in the undifferentiated cells as well as in the tumors, the researchers were able to initiate programmed cell death (apoptosis) in those cells.

This inhibition of this gene just before or after transplantation of the cells could minimize the chances of tumor formation, but the researchers caution that a combination of strategies may be needed to address the major safety concerns regarding tumor formation by human embryonic stem cells.

A report on this latest project of the Hebrew University stem cell researchers appeared in the online edition of Nature Biotechnology. The researchers are headed by Nissim Benvenisty, who is the Herbert Cohn Professor of Cancer Research, and Ph.D. student Barak Blum. Others working on the project are Ph.D. student Ori Bar-Nur and laboratory technician Tamar Golan-Lev.

Jerry Barach | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>