Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover method to neutralize tumor growth in embryonic stem cell therapy

06.05.2009
Researchers at the Hebrew University of Jerusalem have discovered a method to potentially eliminate the tumor-risk factor in utilizing human embryonic stem cells. Their work paves the way for further progress in the promising field of stem cell therapy.

Human embryonic stem cells are theoretically capable of differentiation to all cells of the mature human body (and are hence defined as "pluripotent").

This ability, along with the ability to remain undifferentiated indefinitely in culture, make regenerative medicine using human embryonic stem cells a potentially unprecedented tool for the treatment of various diseases, including diabetes, Parkinson’s disease and heart failure.

A major drawback to the use of stem cells, however, remains the demonstrated tendency of such cells to grow into a specific kind of tumor, called teratoma, when they are implanted in laboratory experiments into mice. It is assumed that this tumorigenic feature will be manifested upon transplantation to human patients as well. The development of tumors from embryonic stem cells is especially puzzling given that these cells start out as completely normal cells.

A team of researchers at the Stem Cell Unit in the Department of Genetics at the Silberman Institute of Life Sciences at the Hebrew University has been working on various approaches to deal with this problem.

In their latest project, the researchers analyzed the genetic basis of tumor formation from human embryonic stem cells and identified a key gene that is involved in this unique tumorigenicity. This gene, called survivin, is expressed in most cancers and in early stage embryos, but it is almost completely absent from mature normal tissues.

The survivin gene is especially highly expressed in undifferentiated human embryonic stem cells and in their derived tumors. By neutralizing the activity of survivin in the undifferentiated cells as well as in the tumors, the researchers were able to initiate programmed cell death (apoptosis) in those cells.

This inhibition of this gene just before or after transplantation of the cells could minimize the chances of tumor formation, but the researchers caution that a combination of strategies may be needed to address the major safety concerns regarding tumor formation by human embryonic stem cells.

A report on this latest project of the Hebrew University stem cell researchers appeared in the online edition of Nature Biotechnology. The researchers are headed by Nissim Benvenisty, who is the Herbert Cohn Professor of Cancer Research, and Ph.D. student Barak Blum. Others working on the project are Ph.D. student Ori Bar-Nur and laboratory technician Tamar Golan-Lev.

Jerry Barach | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>