Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover metabolite linked to aggressive prostate cancer

13.02.2009
Finding could lead to test to help guide treatment decisions

Researchers from the University of Michigan Comprehensive Cancer Center have identified a panel of small molecules, or metabolites, that appear to indicate aggressive prostate cancer.

The finding could lead to a simple test that would help doctors determine which prostate cancers are slow-growing and which require immediate, aggressive treatment.

Results of the study appear in the Feb. 12 issue of Nature.

"One of the biggest challenges we face in prostate cancer is determining if the cancer is aggressive. We end up overtreating our patients because physicians don't know which tumors will be slow-growing. With this research, we have identified a potential marker for the aggressive tumors," says senior study author Arul Chinnaiyan, M.D., Ph.D., director of the Michigan Center for Translational Pathology and S.P. Hicks Endowed Professor of Pathology at the U-M Medical School.

The researchers looked at 1,126 metabolites across 262 samples of tissue, blood or urine associated with benign prostate tissue, early stage prostate cancer and advanced, or metastatic, prostate cancer. They mapped the alterations in metabolites and identified about 10 that were present more often in prostate cancer than in the benign cells and were present most often in the advanced cancer samples.

"When we're looking at metabolites, we're looking several steps beyond genes and proteins. It allows us to look very deeply at some of the functions of the cells and the biochemistry that occurs during cancer development," says Chinnaiyan, a Howard Hughes Medical Institute investigator.

One metabolite in particular, sarcosine, appeared to be one of the strongest indicators of advanced disease. Levels of sarcosine, an amino acid, were elevated in 79 percent of the metastatic prostate cancer samples and in 42 percent of the early stage cancer samples. Sarcosine was not found at all in the cancer-free samples.

In the study, sarcosine was a better indicator of advancing disease than the traditional prostate specific antigen, or PSA, test that is currently used to monitor or screen for prostate cancer. Sarcosine was detected in the urine, which has researchers hopeful that a simple urine test could be used.

In addition, the researchers found that sarcosine is involved in the same pathways that are linked to cancer invasiveness. This suggests sarcosine as a potential target for future drug development.

"This research gets at characterizing the chemical complexity of a sample of blood. In the future, this science will drive how doctors make treatment recommendations for their patients," says study author Christopher Beecher, Ph.D., professor of pathology at the U-M Medical School.

Results are preliminary at this point and will need years of further testing and development before this technology would be available for patients.

Prostate cancer statistics: 186,320 Americans will be diagnosed with prostate cancer this year and 28,660 will die from the disease, according to the American Cancer Society

Additional authors: From the University of Michigan: Arun Sreekumar, Laila M. Poisson, Thekkelnaycke M. Rajendiran, Amjad P. Khan, Qi Cao, Jindan Yu, Bharathi Laxman, Rohit Mehra, Robert J. Lonigro, Yong Li, Mukesh K. Nyati, Aarif Ahsan, Shanker Kalyana-Sundaram, Bo Han, Xuhong Cao, Jaemun Byun, Gilbert S. Omenn, Subramaniam Pennathur, John T. Wei and Sooryanarayana Varambally. From Metabolon Inc.: Danny C. Alexander, Alvin Berger and Jeffrey R. Shuster. From Penn State University: Debashis Ghosh.

Funding: National Cancer Institute Early Detection Research Network, National Institutes of Health, an MTTC grant, the Burroughs Wellcome Foundation, and the Doris Duke Charitable Foundation

Disclosure: The University of Michigan has exclusively licensed all pending patents covering this technology to Metabolon, a company with expertise in discovering biomarkers using metabolomics. Beecher, Alexander, Shuster and Chinnaiyan own equity in Metabolon and Chinnaiyan serves on its Scientific Advisory Board. Beecher is a previous employee of Metabolon.

Reference: Nature, Vol. 457, No. 7231, pp. 910-915, Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression

Resources:

U-M Cancer AnswerLine, 800-865-1125
U-M Comprehensive Cancer Center, www.mcancer.org
Michigan Center for Translational Pathology, www.med.umich.edu/mctp

Nicole Fawcett | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>