Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover mechanism that limits scar formation

11.06.2010
Researchers from the University of Illinois at Chicago have discovered that an unexpected cellular response plays an important role in breaking down and inhibiting the formation of excess scar tissue in wound healing.

Their study was published online this week in Nature Cell Biology.

When an organism suffers severe injury, specialized cells are "recruited" to the wound site that rapidly produce extracellular matrix proteins such as collagen to provide structural support to the tissue, according to Lester Lau, professor of biochemistry and molecular biology at the UIC College of Medicine and principal investigator in the study.

Joon-Il Jun, a postdoctoral fellow working in Lau's lab and first author of the paper, found that fibroblasts recruited to the site of skin wounds were entering a state of reproductive dormancy, or cell-cycle arrest, called senescence.

This was quite unexpected, Jun said. Until now senescence was believed to occur in cells that suffered DNA damage -- to prevent them from proliferating and, possibly, becoming cancerous.

He discovered that the senescent fibroblasts were making proteins that degraded the extracellular matrix and accelerated the breakdown of collagen. The senescent cells also stopped making collagen.

"The accumulation of senescent cells in the wound has the biological effect of inhibiting the formation of excess scar tissue," Jun said.

Jun also discovered that a protein called CCN1 is responsible for turning on the senescent state in fibroblasts. He was able to show that in mice with a mutated, non-functional form of CCN1, the fibroblasts at the site of a skin wound did not become senescent, and the wound developed excessive scar tissue.

Further, Jun was able to "rescue" the mutated mice by applying CCN1 protein topically to the skin wound, triggering fibroblast senescence and limiting the formation of scar tissue.

The discovery that senescence is a normal wound-healing response in the skin; that senescence in the wound serves an anti-fibrotic function; and that CCN1 is the critical protein that controls this process may prove important in understanding a wide range of pathological conditions related to tissue scarring, said Lau.

"For example, chronic injury to the liver from a number of causes, including viral infections, alcoholism, diabetes and obesity, leads to fibrosis and may progress to cirrhosis," Lau said. "After a heart attack, accumulation of scar tissue in the heart impairs its ability to pump efficiently."

The ability to control the formation of scar tissue, or fibrosis, has important implications for future therapies for treating wound-healing disorders, including organ damage where functional tissue is replaced with scar tissue, Lau said.

The study was supported by grants from the National Institutes of Health.

For more information about UIC, visit www.uic.edu

Jeanne Galatzer-Levy | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>