Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover mechanism of insulin production that can lead to better treatment for diabetes

12.11.2009
How a specific gene within the pancreas affects secretion of insulin has been discovered by researchers from the Hebrew University of Jerusalem, in collaboration with Japanese and American universities.

Their work opens the way for a new understanding of possible paths to battle diabetes and diabetes-related health problems, which are on the rise all over the world.

Blood glucose levels are tightly regulated by secretion of insulin from beta cells in the pancreas. Defective insulin secretion results in poorly regulated blood glucose levels and diabetes.

The work of the multi-national research team explored the role of LKB1, a gene involved in many cellular functions, whose role in the pancreas was not examined before. Specifically, they studied the implications of beta cell-specific loss of the LKB1 gene, using a mouse model system. They were able to show that eliminating this gene from beta cells causes the production and secretion of more insulin than normal beta cells, resulting in an enhanced response to increases in blood glucose levels.

The findings have potentially great implications for those suffering from diabetes (excessive blood sugar) due to insufficient production of insulin in the pancreas.

Since it was shown that LKB1 negatively regulates both insulin content and secretion, the way has now been opened to possible development of a novel therapy that would limit the presence of this gene in pancreas beta cells, thus enhancing insulin secretion.

The researchers involved in the project, whose findings were published recently in the journal Cell Metabolism, were led by Dr. Yuval Dor of the Institute for Medical Research Israel-Canada of the Hebrew University-Hadassah Medical School and included students Zvi Granot, Avital Swisa, Judith Magenheim and Miri Stolovitch-Rain, as well as scientists from Kobe University in Japan, and American researchers from the University of Pennsylvania, Washington University in St. Louis and Massachusetts General Hospital in Boston.

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>