Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers discover mechanism of insulin production that can lead to better treatment for diabetes

How a specific gene within the pancreas affects secretion of insulin has been discovered by researchers from the Hebrew University of Jerusalem, in collaboration with Japanese and American universities.

Their work opens the way for a new understanding of possible paths to battle diabetes and diabetes-related health problems, which are on the rise all over the world.

Blood glucose levels are tightly regulated by secretion of insulin from beta cells in the pancreas. Defective insulin secretion results in poorly regulated blood glucose levels and diabetes.

The work of the multi-national research team explored the role of LKB1, a gene involved in many cellular functions, whose role in the pancreas was not examined before. Specifically, they studied the implications of beta cell-specific loss of the LKB1 gene, using a mouse model system. They were able to show that eliminating this gene from beta cells causes the production and secretion of more insulin than normal beta cells, resulting in an enhanced response to increases in blood glucose levels.

The findings have potentially great implications for those suffering from diabetes (excessive blood sugar) due to insufficient production of insulin in the pancreas.

Since it was shown that LKB1 negatively regulates both insulin content and secretion, the way has now been opened to possible development of a novel therapy that would limit the presence of this gene in pancreas beta cells, thus enhancing insulin secretion.

The researchers involved in the project, whose findings were published recently in the journal Cell Metabolism, were led by Dr. Yuval Dor of the Institute for Medical Research Israel-Canada of the Hebrew University-Hadassah Medical School and included students Zvi Granot, Avital Swisa, Judith Magenheim and Miri Stolovitch-Rain, as well as scientists from Kobe University in Japan, and American researchers from the University of Pennsylvania, Washington University in St. Louis and Massachusetts General Hospital in Boston.

Jerry Barach | Hebrew University
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>