Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover mechanism of insulin production that can lead to better treatment for diabetes

12.11.2009
How a specific gene within the pancreas affects secretion of insulin has been discovered by researchers from the Hebrew University of Jerusalem, in collaboration with Japanese and American universities.

Their work opens the way for a new understanding of possible paths to battle diabetes and diabetes-related health problems, which are on the rise all over the world.

Blood glucose levels are tightly regulated by secretion of insulin from beta cells in the pancreas. Defective insulin secretion results in poorly regulated blood glucose levels and diabetes.

The work of the multi-national research team explored the role of LKB1, a gene involved in many cellular functions, whose role in the pancreas was not examined before. Specifically, they studied the implications of beta cell-specific loss of the LKB1 gene, using a mouse model system. They were able to show that eliminating this gene from beta cells causes the production and secretion of more insulin than normal beta cells, resulting in an enhanced response to increases in blood glucose levels.

The findings have potentially great implications for those suffering from diabetes (excessive blood sugar) due to insufficient production of insulin in the pancreas.

Since it was shown that LKB1 negatively regulates both insulin content and secretion, the way has now been opened to possible development of a novel therapy that would limit the presence of this gene in pancreas beta cells, thus enhancing insulin secretion.

The researchers involved in the project, whose findings were published recently in the journal Cell Metabolism, were led by Dr. Yuval Dor of the Institute for Medical Research Israel-Canada of the Hebrew University-Hadassah Medical School and included students Zvi Granot, Avital Swisa, Judith Magenheim and Miri Stolovitch-Rain, as well as scientists from Kobe University in Japan, and American researchers from the University of Pennsylvania, Washington University in St. Louis and Massachusetts General Hospital in Boston.

Jerry Barach | Hebrew University
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>