Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover why measles spreads so quickly

07.11.2011
Finding may also help fight cancer

Measles virus is perhaps the most contagious virus in the world, affecting 10 million children worldwide each year and accounting for 120,000 deaths. An article published in the Nov. 2, 2011 issue of Nature explains why this virus spreads so rapidly.

The discovery by Roberto Cattaneo, Ph.D., at Mayo Clinic in Rochester, MN, in collaboration with Veronika von Messling, DVM, at the Centre INRS–Institut Armand-Frappier and research teams at several other universities opens up promising new avenues in cancer treatment.

Measles virus spreads from host to host primarily by respiratory secretions. This mode of transmission explains why the virus spreads so quickly and how it resists worldwide vaccination programs to eradicate it.

The study in Nature shows for the first time how the measles virus "exits" its host via nectin-4, which is found in the trachea. While viruses generally use cellular receptors to trigger and spread infection in the body, measles virus uses one host protein to enter the host and another protein expressed at a strategic site to get out.

Nectin-4 is a biomarker for certain types of cancer, such as breast, ovarian, and lung cancers. Clinical trials are currently under way using a modified measles virus. Because measles virus actively targets nectin-4, measles-based cancer therapy may be more successful in patients whose cancers express nectin-4. Such therapy could be less toxic than chemotherapy or radiation.

Research was conducted in Dr. Cattaneo's laboratory in collaboration with the Paul Ehrlich Institute in Langen, Germany, the University of Iowa in Iowa City, U.S.A., Centre INRS–Institut Armand-Frappier in Laval, Canada, Inserm UMR 891/CRCM/Institut Paoli-Calmettes/Université d'Aix-Marseille in Marseille, France, and Duke-NUS Graduate Medical School in Singapore.

Institut national de recherche scientifique (INRS) is a graduate and postgraduate research and training university. One of Canada's leading research universities in terms of grants per professor, INRS brings together some 150 professors and close to 700 students and postdoctoral fellows in its centres in Montreal, Quebec City, Laval, and Varennes. INRS research teams conduct fundamental research essential to the advancement of science in Quebec as well as internationally and play a critical role in developing concrete solutions to problems facing our society.

Gisèle Bolduc | EurekAlert!
Further information:
http://www.inrs.ca

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>