Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Discover Way to Make Insulin Cells

Findings of UCLA study hold promise for fight against diabetes

Simply put, people develop diabetes because they don't have enough pancreatic beta cells to produce the insulin necessary to regulate their blood sugar levels.

But what if other cells in the body could be coaxed into becoming pancreatic beta cells? Could we potentially cure diabetes?

Researchers from UCLA's Larry L. Hillblom Islet Research Center have taken an important step in that direction. They report in the April issue of the journal Developmental Cell that they may have discovered the underlying mechanism that could convert other cell types into pancreatic beta cells.

While the current standard of treatment for diabetes — insulin therapy — helps patients maintain sugar levels, it isn't perfect, and many patients remain at high risk of developing a variety of medical complications. Replenishing lost beta cells could serve as a more permanent solution, both for those who have lost such cells due to an immune assault (Type 1 diabetes) and those who acquire diabetes later in life due to insulin resistance (Type 2).

"Our work shows that beta cells and related endocrine cells can easily be converted into each other," said study co-author Dr. Anil Bhushan, an associate professor of medicine in the endocrinology division at the David Geffen School of Medicine at UCLA and in the UCLA Department of Molecular, Cell and Developmental Biology.

It had long been assumed that the identity of cells was "locked" into place and that they could not be switched into other cell types. But recent studies have shown that some types of cells can be coaxed into changing into others — findings that have intensified interest in understanding the mechanisms that maintain beta cell identity.

The UCLA researchers show that chemical tags called "methyl groups" that bind to DNA — where they act like a volume knob, turning up or down the activity of certain genes — are crucial to understanding how cells can be converted into insulin-secreting beta cells. They show that DNA methylation keeps ARX, a gene that triggers the formation of glucagon-secreting alpha cells in the embryonic pancreas, silent in beta cells.

Deletion of Dnmt1, the enzyme responsible for DNA methylation, from insulin-producing beta cells converts them into alpha cells.

These findings suggest that a defect in beta cells' DNA methylation process interferes with their ability to maintain their "identity." So if this "epigenetic mechanism," as the researchers call it, can produce alpha cells, there may be an analogous mechanism that can produce beta cells that would maintain blood sugar equilibrium.

"We show that the basis for this conversion depends not on genetic sequences but on modifications to the DNA that dictates how the DNA is wrapped within the cell," Bhushan said. "We think this is crucial to understanding how to convert a variety of cell types, including stem cells, into functional beta cells."

According to the American Diabetes Association, 25.8 million children and adults in the U.S. — 8.3 percent of the population — have diabetes.

The National Institute of Diabetes and Digestive and Kidney Diseases, the Juvenile Diabetes Research Foundation, and the Helmsley Trust funded this study.

Additional co-authors of the study are Sangeeta Dhawan, Senta Georgia, Shuen-ing Tschen and Guoping Fan, all of UCLA.

The Larry L. Hillblom Islet Research Center at UCLA, established in 2004, is the first center dedicated to the study of the Islets of Langerhans, which include the insulin-producing cells in the pancreas. An understanding of the causes of islet cell destruction is key to finding a cure for diabetes. The center's faculty members, recruited from around the world, provide leadership in the worldwide fight against the disease. The center is made possible through a grant from the Larry Hillblom Foundation, established to support medical research in the state of California.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Enrique Rivero | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>