Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Way to Make Insulin Cells

03.05.2011
Findings of UCLA study hold promise for fight against diabetes

Simply put, people develop diabetes because they don't have enough pancreatic beta cells to produce the insulin necessary to regulate their blood sugar levels.

But what if other cells in the body could be coaxed into becoming pancreatic beta cells? Could we potentially cure diabetes?

Researchers from UCLA's Larry L. Hillblom Islet Research Center have taken an important step in that direction. They report in the April issue of the journal Developmental Cell that they may have discovered the underlying mechanism that could convert other cell types into pancreatic beta cells.

While the current standard of treatment for diabetes — insulin therapy — helps patients maintain sugar levels, it isn't perfect, and many patients remain at high risk of developing a variety of medical complications. Replenishing lost beta cells could serve as a more permanent solution, both for those who have lost such cells due to an immune assault (Type 1 diabetes) and those who acquire diabetes later in life due to insulin resistance (Type 2).

"Our work shows that beta cells and related endocrine cells can easily be converted into each other," said study co-author Dr. Anil Bhushan, an associate professor of medicine in the endocrinology division at the David Geffen School of Medicine at UCLA and in the UCLA Department of Molecular, Cell and Developmental Biology.

It had long been assumed that the identity of cells was "locked" into place and that they could not be switched into other cell types. But recent studies have shown that some types of cells can be coaxed into changing into others — findings that have intensified interest in understanding the mechanisms that maintain beta cell identity.

The UCLA researchers show that chemical tags called "methyl groups" that bind to DNA — where they act like a volume knob, turning up or down the activity of certain genes — are crucial to understanding how cells can be converted into insulin-secreting beta cells. They show that DNA methylation keeps ARX, a gene that triggers the formation of glucagon-secreting alpha cells in the embryonic pancreas, silent in beta cells.

Deletion of Dnmt1, the enzyme responsible for DNA methylation, from insulin-producing beta cells converts them into alpha cells.

These findings suggest that a defect in beta cells' DNA methylation process interferes with their ability to maintain their "identity." So if this "epigenetic mechanism," as the researchers call it, can produce alpha cells, there may be an analogous mechanism that can produce beta cells that would maintain blood sugar equilibrium.

"We show that the basis for this conversion depends not on genetic sequences but on modifications to the DNA that dictates how the DNA is wrapped within the cell," Bhushan said. "We think this is crucial to understanding how to convert a variety of cell types, including stem cells, into functional beta cells."

According to the American Diabetes Association, 25.8 million children and adults in the U.S. — 8.3 percent of the population — have diabetes.

The National Institute of Diabetes and Digestive and Kidney Diseases, the Juvenile Diabetes Research Foundation, and the Helmsley Trust funded this study.

Additional co-authors of the study are Sangeeta Dhawan, Senta Georgia, Shuen-ing Tschen and Guoping Fan, all of UCLA.

The Larry L. Hillblom Islet Research Center at UCLA, established in 2004, is the first center dedicated to the study of the Islets of Langerhans, which include the insulin-producing cells in the pancreas. An understanding of the causes of islet cell destruction is key to finding a cure for diabetes. The center's faculty members, recruited from around the world, provide leadership in the worldwide fight against the disease. The center is made possible through a grant from the Larry Hillblom Foundation, established to support medical research in the state of California.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Enrique Rivero | Newswise Science News
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>