Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover important link between adrenal gland hormone and brain in hypertension

10.11.2010
A hormone already responsible for increasing blood pressure by prompting the kidneys to retain salt appears to moonlight as a major stimulator of the brain centers that control the vascular system and blood pressure.

Researchers at UT Southwestern Medical Center studied patients who overproduce aldosterone to see whether the hormone had any effect on sympathetic nerve activity responsible for blood pressure increases.

"Between 10 percent and 20 percent of patients with high blood pressure who are resistant to treatment have elevated aldosterone hormones," said Dr. Wanpen Vongpatanasin, associate professor of internal medicine at UT Southwestern and senior author of the study in the October issue of the Journal of Clinical Endocrinology & Metabolism. "Previous studies in animals showed that this hormone can affect many parts of the brain that control the cardiovascular system. We wanted to understand whether aldosterone also increases the nerve activity that causes constriction of blood vessels, which elevates blood pressure in humans.

"Since aldosterone can cause high blood pressure by affecting multiple systems and not just the kidneys, this study sheds light on why blood pressure is so difficult to control in patients with high aldosterone levels."

Aldosterone is an essential hormone that regulates electrolytes in the body. Created by the adrenal glands, it is responsible for re-absorption of sodium and water into the bloodstream and for regulating potassium. High levels of aldosterone can cause high blood pressure, muscle cramps and weakness.

Dr. Vongpatanasin and her team studied 14 hypertensive patients who overproduced aldosterone, a condition known as primary aldosteronism, and compared them with 20 hypertensive patients and 18 patients with normal blood pressure.

The data showed that in humans, aldosterone does increase activity in a part of the nervous system that raises blood pressure. Such activity contributes to the onset of hypertension. Furthermore, when the nerve activity was measured in patients who had adrenal surgery to remove tumors that produced this hormone, both nerve activity and blood pressure decreased substantially.

"Our study also suggested that treatment of hypertension in these patients not only requires targeting the kidneys but also the sympathetic nervous system that controls blood pressure," Dr. Vongpatanasin said. "Since our study shows that patients with high aldosterone levels have high nerve activity, future studies are needed to determine how we could prevent effects of aldosterone on the brain."

The research was supported by the National Institutes of Health, the Donald W. Reynolds Foundation, the George M. O'Brien Kidney Research Center, the Lincy Foundation and the Burroughs Wellcome Fund.

Other UT Southwestern researchers who contributed to the study included senior author Dr. Andrew Kontak, postdoctoral researcher in internal medicine; Dr. Zhongyun Wang, research associate in internal medicine; Debbie Arbique, advance practice nurse in internal medicine; Beverley Adams-Huet, assistant professor of clinical sciences; Dr. Richard Auchus, professor of internal medicine; and Dr. Shawna Nesbitt, associate professor of internal medicine. Other researchers included Dr. Ronald Victor of Cedars-Sinai Medical Center.

Visit http://www.utsouthwestern.org/endocrinology to learn more about clinical services in endocrinology at UT Southwestern.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

LaKisha Ladson | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>