Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Genetic Link Between Both Types of ALS

06.05.2010
Finding could ultimately lead to therapy for ALS

Researchers from Northwestern University Feinberg School of Medicine have discovered a link between sporadic and familial forms of amyotrophic lateral sclerosis (ALS), a neurodegenerative disease also known as Lou Gehrig's disease.

Researchers found that a protein called FUS forms characteristic skein-like cytoplasmic inclusions in spinal motor neurons in most cases of ALS. Mutations in this gene have been previously linked to a small subset of familial ALS cases. Researchers thus linked a rare genetic cause to most cases of ALS, clearing the way for rational therapy based on a known molecular target.

The study was recently published online in the Annals of Neurology.

ALS is a disease in which muscle-controlling nerve cells in the brain and spinal cord (motor neurons) die, resulting in rapidly progressive paralysis and death usually within three to five years of the onset of symptoms. Most cases of ALS are of unknown etiology and appear as sporadic ALS. About 5 to 10 percent of ALS cases are familial. Some forms of familial ALS are caused by genetic mutations in specific genes. Mutations in the Cu/Zn superoxide dismutase gene (SOD1) account for approximately 20 percent of familial ALS cases. Mutations in the TAR DNA-binding protein gene (TDP43) and FUS gene occur in about 4 to 5 percent of the familial ALS cases. Altogether, mutations in specific genes have been identified in about 30 percent of familial ALS cases. In contrast to familial ALS, the etiology and the pathogenic mechanisms underlying sporadic ALS -- 90 percent of all ALS -- has remained largely unknown. Understanding the causes and pathogenic mechanisms of sporadic ALS is the major challenge in this disease.

For this study, researchers examined the post-mortem spinal cords and brains of 100 cases, 78 with ALS and 22 in a control group. They found FUS pathology in the spinal cords of all the ALS cases, except for a few cases with SOD1 mutations. But FUS pathology was not present in control cases without ALS.

"This is a game changer because it establishes a connection in the development of sporadic ALS with a known cause of familial ALS," said senior author Teepu Siddique, M.D., the Les Turner ALS Foundation/Herbert C. Wenske Professor of the Davee Department of Neurology and Clinical Neurosciences at Feinberg and a neurologist at Northwestern Memorial Hospital.

"Our finding opens up a new field of investigation for rational therapy for all of ALS," Siddique added. "This is the holy grail of researchers in this field."

"There hasn't been a therapy for most of ALS, because the cause was unknown," Siddique said. "Three genes have been identified in ALS, but the problem has been connecting inherited ALS to sporadic ALS."
"We identified the FUS pathology in sporadic ALS and most familial ALS cases," said Han-Xiang Deng, M.D., associate professor of neurology at Feinberg and lead author of the paper. "The patients with the FUS pathology may account for about 90 percent of all ALS cases. Our findings suggest that pathological interaction of FUS with other proteins is a common theme in motor neuron degeneration in the vast majority of the ALS cases. We believe that this is a major step forward in formulating a common pathogenic pathway for motor neuron degeneration. Importantly, it may offer a novel avenue for developing therapies through targeting these FUS-containing inclusions."

The one exception to the new finding is when familial ALS is associated with a mutation on the SOD1 gene. In those patients and in the mutant SOD1 transgenic mouse models, researchers did not find evidence of FUS pathology.

"This tells us that it follows a different pathway of pathogenesis, so treatment for this form of the disease would have to be different," Deng said.

The study is supported by the National Institutes of Health, the Les Turner ALS Foundation, the Vena E. Schaff ALS Research Fund, the Harold Post Research Professorship, the Herbert and Florence C. Wenske Foundation, the David C. Asselin MD Memorial Fund and the Les Turner ALS Foundation/Herbert and Florence C. Wenske Professorship.

Marla Paul is the health sciences editor.
Contact her at marla-paul@northwestern.edu

Marla Paul | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>