Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover novel gene and new pathomechanism for Joubert syndrome

29.06.2011
Joubert syndrome is a genetic condition that is characterized by a complex brain malformation.

An international team of researchers led by the human geneticist Dr. Hanno Bolz (Institute of Human Genetics, University Hospital of Cologne) and Dr. Bernhard Schermer (head of the Nephrolab Cologne) has identified defects in the KIF7 gene in patients with Joubert syndrome and uncovered a novel mechanism for this disease. The study has been published online in The Journal of Clinical Investigation and will appear in the July print issue.

The team investigated an Egyptian family that tested negative for all known Joubert genes. “Because the parents in this family were related, it was highly suited for identifying a novel gene for Joubert syndrome” says Bolz.

The geneticists localized the disorder to the long arm of chromosome 15 (designation for the new disease gene locus: JBTS12) and subsequently identified mutations in the KIF7 gene in the Egyptian family and in additional patients. KIF7 encodes a ciliary motor protein.

Cilia are antenna-like structures on the cell surface, and many research laboratories worldwide focus on elucidating the functions of this organelle. Cilia are sensory organelles that transmit environmental signals into the cell. An increasing number of genetic diseases have been linked to ciliary dysfunction (the so-called “ciliopathies”).

One patient was found to carry a KIF7 mutation together with two mutations in a known Joubert gene, TMEM67. “This is a phenomenon in ciliopathy genetics that we became more and more aware of over the recent years” explains Dr. Bolz. In 2010, the group has already described similar “oligogenic inheritance” for another ciliopathy, Usher syndrome, also in The Journal of Clinical Investigation. “Besides, KIF7 represents a prime candidate for mono- and oligogenic forms of related ciliopathies, namely Meckel-Gruber, Senior Loken, and Bardet-Biedl syndromes, Leber congenital amaurosis, and nephronophthisis” Bolz adds.

“Chemical substances such as hormones or cytokines bind to ciliary receptors which initiates different activities in the cell” says Dr. Bernhard Schermer. “In the kidney, the urine flow deflects the cilia. Through this, the cells receive informations on flow rate and direction.”

It recently became clear that KIF7 plays a role in Sonic hedgehog (Shh) signaling, a pathway that is crucial for embryonic development. Shh receptors localize exclusively to the cilium. “Our data indicate a function of KIF7 that goes beyond the cilium and hedgehog signaling, to basic cellular processes: Targeted inactivation of KIF7 leads to only mild impairment of cilia formation, but causes dramatic changes of other organelles. As a common basis for these pathologies, we have identified changes in the microtubular cytoskeleton.”

This cytoskeleton regulates important routes of transport through the cell and thereby influences the cell’s shape and orientation. “Our findings indicate a novel pathomechanism for Joubert syndrome that may also be the basis for other ciliopathies” Dr. Schermer concludes.

Besides the two teams from Cologne, researchers from the Ain Shams University in Cairo, the Department of Paediatric Neurology, University Children’s Hospital of Zurich, the Department of Pediatrics, Innsbruck Medical University, the German Cancer Research Center, Heidelberg, des DKFZ in Heidelberg, Zentrum für Kinder- und Jugendmedizin, Klinikum Oldenburg, the Institute of Human Genetics, University Hospital of Schleswig-Holstein, the Department of Radiology and the Department of Anatomy, University of Cologne, contributed to the study.

The study was supported by the Deutsche Forschungsgemeinschaft, the Pro Retina Foundation Germany, Köln Fortune (University Hospital of Cologne), and the Gertrud Kusen-Stiftung.

Publication:
Mutations in KIF7 link Joubert syndrome with Sonic Hedgehog signaling and microtubule dynamics.
Dafinger C, Liebau MC, Elsayed SM, Hellenbroich Y, Boltshauser E, Korenke GC, Fabretti F, Janecke AR, Ebermann I, Nürnberg G, Nürnberg P, Zentgraf H, Koerber F, Addicks K, Elsobky E, Benzing T, Schermer B, Bolz HJ.
The Journal of Clinical Investigation, 2011.
doi:10.1172/JCI43639
http://www.jci.org/articles/view/43639
Contact:
PD Dr. Hanno Jörn Bolz
Institute of Human Genetics, University Hospital of Cologne, Germany
(currently at the Bioscientia Center for Human Genetics, Ingelheim, Germany)
Phone: +49 6132 781-206
E-Mail: hanno.bolz@uk-koeln.de
PD Dr. Bernhard Schermer
Nephrologic Research Laboratory
Klinik IV für Innere Medizin
Uniklinik Köln
Telefon: 0221 478-89030
E-Mail: bernhard.schermer@uk-koeln.de
Christoph Wanko
Public Relations Officer
Uniklinik Köln
Telefon: 0221 478-5548
E-Mail: christoph.wanko@uk-koeln.de

Christoph Wanko | idw
Further information:
http://www.uk-koeln.de

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>