Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover novel gene and new pathomechanism for Joubert syndrome

29.06.2011
Joubert syndrome is a genetic condition that is characterized by a complex brain malformation.

An international team of researchers led by the human geneticist Dr. Hanno Bolz (Institute of Human Genetics, University Hospital of Cologne) and Dr. Bernhard Schermer (head of the Nephrolab Cologne) has identified defects in the KIF7 gene in patients with Joubert syndrome and uncovered a novel mechanism for this disease. The study has been published online in The Journal of Clinical Investigation and will appear in the July print issue.

The team investigated an Egyptian family that tested negative for all known Joubert genes. “Because the parents in this family were related, it was highly suited for identifying a novel gene for Joubert syndrome” says Bolz.

The geneticists localized the disorder to the long arm of chromosome 15 (designation for the new disease gene locus: JBTS12) and subsequently identified mutations in the KIF7 gene in the Egyptian family and in additional patients. KIF7 encodes a ciliary motor protein.

Cilia are antenna-like structures on the cell surface, and many research laboratories worldwide focus on elucidating the functions of this organelle. Cilia are sensory organelles that transmit environmental signals into the cell. An increasing number of genetic diseases have been linked to ciliary dysfunction (the so-called “ciliopathies”).

One patient was found to carry a KIF7 mutation together with two mutations in a known Joubert gene, TMEM67. “This is a phenomenon in ciliopathy genetics that we became more and more aware of over the recent years” explains Dr. Bolz. In 2010, the group has already described similar “oligogenic inheritance” for another ciliopathy, Usher syndrome, also in The Journal of Clinical Investigation. “Besides, KIF7 represents a prime candidate for mono- and oligogenic forms of related ciliopathies, namely Meckel-Gruber, Senior Loken, and Bardet-Biedl syndromes, Leber congenital amaurosis, and nephronophthisis” Bolz adds.

“Chemical substances such as hormones or cytokines bind to ciliary receptors which initiates different activities in the cell” says Dr. Bernhard Schermer. “In the kidney, the urine flow deflects the cilia. Through this, the cells receive informations on flow rate and direction.”

It recently became clear that KIF7 plays a role in Sonic hedgehog (Shh) signaling, a pathway that is crucial for embryonic development. Shh receptors localize exclusively to the cilium. “Our data indicate a function of KIF7 that goes beyond the cilium and hedgehog signaling, to basic cellular processes: Targeted inactivation of KIF7 leads to only mild impairment of cilia formation, but causes dramatic changes of other organelles. As a common basis for these pathologies, we have identified changes in the microtubular cytoskeleton.”

This cytoskeleton regulates important routes of transport through the cell and thereby influences the cell’s shape and orientation. “Our findings indicate a novel pathomechanism for Joubert syndrome that may also be the basis for other ciliopathies” Dr. Schermer concludes.

Besides the two teams from Cologne, researchers from the Ain Shams University in Cairo, the Department of Paediatric Neurology, University Children’s Hospital of Zurich, the Department of Pediatrics, Innsbruck Medical University, the German Cancer Research Center, Heidelberg, des DKFZ in Heidelberg, Zentrum für Kinder- und Jugendmedizin, Klinikum Oldenburg, the Institute of Human Genetics, University Hospital of Schleswig-Holstein, the Department of Radiology and the Department of Anatomy, University of Cologne, contributed to the study.

The study was supported by the Deutsche Forschungsgemeinschaft, the Pro Retina Foundation Germany, Köln Fortune (University Hospital of Cologne), and the Gertrud Kusen-Stiftung.

Publication:
Mutations in KIF7 link Joubert syndrome with Sonic Hedgehog signaling and microtubule dynamics.
Dafinger C, Liebau MC, Elsayed SM, Hellenbroich Y, Boltshauser E, Korenke GC, Fabretti F, Janecke AR, Ebermann I, Nürnberg G, Nürnberg P, Zentgraf H, Koerber F, Addicks K, Elsobky E, Benzing T, Schermer B, Bolz HJ.
The Journal of Clinical Investigation, 2011.
doi:10.1172/JCI43639
http://www.jci.org/articles/view/43639
Contact:
PD Dr. Hanno Jörn Bolz
Institute of Human Genetics, University Hospital of Cologne, Germany
(currently at the Bioscientia Center for Human Genetics, Ingelheim, Germany)
Phone: +49 6132 781-206
E-Mail: hanno.bolz@uk-koeln.de
PD Dr. Bernhard Schermer
Nephrologic Research Laboratory
Klinik IV für Innere Medizin
Uniklinik Köln
Telefon: 0221 478-89030
E-Mail: bernhard.schermer@uk-koeln.de
Christoph Wanko
Public Relations Officer
Uniklinik Köln
Telefon: 0221 478-5548
E-Mail: christoph.wanko@uk-koeln.de

Christoph Wanko | idw
Further information:
http://www.uk-koeln.de

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>