Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover gene that helps control the production of stomach acid

04.11.2008
University of Cincinnati (UC) researchers have discovered a gene that helps control the secretion of acid in the stomach—information that could one day aid scientists in creating more efficient treatment options for conditions such as acid reflux or peptic ulcers.

This data is published in the Nov. 3 edition of the Proceedings of the National Academy of Sciences (PNAS).

UC professor Manoocher Soleimani, MD, and colleagues found that when transporter Slc26a9—the gene responsible for the production of chloride in the stomach—is eliminated from the mouse model's system, acid secretion in the stomach stops.

Gastric acid, comprised mainly of hydrochloric acid (HCL), is the main secretion in the stomach and helps the body to break down and digest food.

"Investigators were already aware of the gene that caused hydrogen to secrete in the stomach, but the gene that caused chloride to secrete has remained an unknown," Soleimani says. "When we knocked out—or eliminated—this specific transporter in mouse models, acid secretion in the stomach completely halted."

"The hydrogen and chloride genes must work together in order for the stomach to produce acid and function normally."

Soleimani, director of UC's nephrology division and principal investigator of the study, hopes that this data can help researchers create more therapies for people who overproduce stomach acid.

"A very large number of people have acid reflux—caused by regurgitation of stomach acid into the esophagus—or peptic ulcers—caused by the passing of excess stomach acid into the small intestine," Soleimani says. "This occurs because of overproduction of acid in the stomach, and current medications that help control this condition cause undesirable side effects."

He adds that long-term use of these kinds of drugs could cause damage to the lining of the stomach, among other problems.

"With this information, we hope to one day be able to administer gene therapies to patients and avoid this painful and damaging problem altogether," he says.

Katie Pence | EurekAlert!
Further information:
http://www.uc.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>