Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover gene that causes deafness

01.10.2012
Researchers at the University of Cincinnati (UC) and Cincinnati Children's Hospital Medical Center have found a new genetic mutation responsible for deafness and hearing loss associated with Usher syndrome type 1.

These findings, published in the Sept. 30 advance online edition of the journal Nature Genetics, could help researchers develop new therapeutic targets for those at risk for this syndrome.

Partners in the study included the National Institute on Deafness and other Communication Disorders (NIDCD), Baylor College of Medicine and the University of Kentucky.

Usher syndrome is a genetic defect that causes deafness, night-blindness and a loss of peripheral vision through the progressive degeneration of the retina.

"In this study, researchers were able to pinpoint the gene which caused deafness in Usher syndrome type 1 as well as deafness that is not associated with the syndrome through the genetic analysis of 57 humans from Pakistan and Turkey," says Zubair Ahmed, PhD, assistant professor of ophthalmology who conducts research at Cincinnati Children's and is the lead investigator on this study.

Ahmed says that a protein, called CIB2, which binds to calcium within a cell, is associated with deafness in Usher syndrome type 1 and non-syndromic hearing loss.

"To date, mutations affecting CIB2 are the most common and prevalent genetic cause of non-syndromic hearing loss in Pakistan," he says. "However, we have also found another mutation of the protein that contributes to deafness in Turkish populations.

"In animal models, CIB2 is found in the mechanosensory stereocilia of the inner ear—hair cells, which respond to fluid motion and allow hearing and balance, and in retinal photoreceptor cells, which convert light into electrical signals in the eye, making it possible to see," says Saima Riazuddin, PhD, assistant professor in UC's department of otolaryngology who conducts research at Cincinnati Children's and is co-lead investigator on the study.

Researchers found that CIB2 staining is often brighter at shorter row stereocilia tips than the neighboring stereocilia of a longer row, where it may be involved in calcium signaling that regulates mechano-electrical transduction, a process by which the ear converts mechanical energy—or energy of motion—into a form of energy that the brain can recognize as sound.

"With this knowledge, we are one step closer to understanding the mechanism of mechano-electrical transduction and possibly finding a genetic target to prevent non-syndromic deafness as well as that associated with Usher syndrome type 1," Ahmed says.

Other researchers involved in the study include Thomas Friedman, PhD, and Inna Belyantseva, MD, PhD, from the NIDCD; Suzanne Leal, PhD, and her team at Baylor; and Gregory Frolenkov, PhD, and his team at the University of Kentucky.

This study was funded by the NIDCD, the National Science Foundation and the Research to Prevent Blindness Foundation.

Katie Pence | EurekAlert!
Further information:
http://www.uc.edu

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>