Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover expanded role for cancer-causing gene, paving way for new therapeutic investigation

08.11.2010
Researchers at the Hebrew University of Jerusalem have discovered that Vav1 – an oncogene (cancer-causing gene) found in recent years to be one of the factors in tumorous tissue growth -- plays a wider role in several types of cancer than had previously been thought. The discovery has implications for further concentration on targeting this gene in cancer research.

The work of the researchers, led by Dr. Shulamit Katzav-Shapira of the Institute for Medical Research Israel-Canada at the Hebrew University of Jerusalem Faculty of Medicine, was published recently in the Journal of Biological Chemistry.

Vav1 has been known to be involved in alterations in gene expression in the immune system, where it is physiologically expressed. Vav1 was discovered a few years ago by Katzav-Shapira when she was working in the National Cancer Institute laboratory of Dr. Mariano Barbacid in the US. Since this newly identified gene represented the sixth oncogene detected in Dr. Barbacid's laboratory, it was designated by Katzav-Shapira as Vav (six in Hebrew) 1.

Vav1 is involved in the process whereby cells are “triggered” into action. When receptors on the surface of a cell, known as growth factor receptors, receive signals for growth, they relay this information into the cell. This chain of command is often called a "signal transduction cascade" or a "pathway." Signal transduction cascades play a fundamental role in controlling normal cell proliferation, differentiation, cell adhesion, spontaneous movement, and programmed cell death.

Mutations in the proteins driving this signal transduction process are among the main causes for driving cells to develop into cancer. Thus, identification of the signal transducers that are involved in malignant transformation is a prerequisite for understanding cancer and improving its diagnosis and treatment. Since Vav1 was shown to be involved in events leading to alterations in gene expression in the immune system, it is a “key player” in this process.

Now, mutated Vav1 has been shown by Dr. Katzav-Shapira and others to be highly expressed also in neuroblasoma (a cancer that forms in nerve tissue), pancreatic and lung cancer. Indeed, it was surprisingly found to be expressed in 44% of malignant human lung cancer tissue samples that were studied. Since, say the researchers, Vav1 has now been shown to play a role in the process of abnormal tissue growth in several human cancers, it has become an even more highly important potential therapeutic target for cancer therapy.

Working with Katzav-Shapira on this project have been Galit Lazer, a doctoral student; Liron Pe’er, a master’s degree student; Dr. Marganit Farago, a research associate; and Dr. Kazura Machida and Prof. Bruce J. Mayer of the University of Connecticut Health Center.

For further information:
Jerry Barach, Dept. of Media Relations, the Hebrew University,
Tel: 02-588-2904.
Orit Sulitzeanu, Hebrew University spokesperson,
Tel: 054-8820016.

Jerry Barach | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>