Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover why eczema often leads to asthma

19.05.2009
Many young children who get a severe skin rash develop asthma months or years later. Doctors call the progression from eczema, or atopic dermatitis, to breathing problems the atopic march.

Now scientists at Washington University School of Medicine in St. Louis have uncovered what might be the key to atopic march. They've shown that a substance secreted by damaged skin circulates through the body and triggers asthmatic symptoms in allergen-exposed laboratory mice.

The findings, published May 19, 2009, in Public Library of Science Biology, suggest that early treatment of skin rash and inhibition of the trigger substance might block asthma development in young patients with eczema.

Fifty percent to 70 percent of children with severe atopic dermatitis go on to develop asthma, studies show. By comparison, the rate of asthma incidence among the general population is only about 9 percent in children and 7 percent in adults. Seventeen percent of U.S. children suffer from atopic dermatitis, although not all cases are considered severe.

"Over the years, the clinical community has struggled to explain atopic march," says study author Raphael Kopan, Ph.D., professor of developmental biology and of dermatology. "So when we found that the skin of mice with an eczema-like condition produced a substance previously implicated in asthma, we decided to investigate further. We found that the mice also suffered from asthma-like responses to inhaled allergens, implicating the substance, called TSLP, as the link between eczema and asthma."

Doctors and scientists had come up with theories to explain why a skin rash is sometimes associated with asthma. Do some people have an immune system disorder that causes an overreaction to allergens that contact the skin and lung airways? Or is it the opposite — do they have defective skin and airways that trigger an excessive immune response?

Kopan's findings suggest the problem starts with damaged or defective skin. The researchers found that cells in damaged skin can secrete TSLP (thymic stromal lymphopoietin), a compound capable of eliciting a powerful immune response. And because the skin is so effective in secreting TSLP into the blood system, the substance travels throughout the body. When it reaches the lungs, it triggers the hypersensitivity characteristic of asthma.

Led by doctoral student Shadmehr (Shawn) Demehri, the researchers studied mice that had been engineered with a genetic defect in patches of their skin. In the affected areas, the typically ordered layers of skin cells were disrupted, creating a condition similar to eczema. These patches were thickened and inflamed. The defective skin secreted TSLP as part of an alarm system alerting the body that its protective barrier function has failed — the substance activates an immune response that fights invaders.

Operating on the assumption that other barrier organs such as the lung will understand this alarm, the researchers tested what happened when the mice with skin defects inhaled an allergen. They found that their lungs reacted strongly — their breathing became labored and their lung tissue took on the traits that mark asthma in humans: mucous secretion, airway muscle contraction, invasion by white blood cells and conversion of lung cells from one type to another. Additional experiments showed that mice that had normal skin but were engineered to overproduce TSLP also developed the asthma-like symptoms.

"We are excited because we've narrowed down the problem of atopic march to one molecule," Kopan says. "We've shown that skin can act as a signaling organ and drive allergic inflammation in the lung by releasing TSLP. Now it will be important to address how to prevent defective skin from producing TSLP. If that can be done, the link between eczema and asthma could be broken."

TSLP is also produced in lungs of asthma patients, and Kopan says that research in the skin could eventually lead to ways to interfere with TSLP made in the lungs and thereby ease asthma development even in cases that aren't linked to eczema.

"This research is a great example of the value of basic research approaches in uncovering the root causes of disease," says Richard Anderson, M.D., Ph.D., of the National Institutes of Health's National Institute of General Medical Sciences, which partially supported the work. "If these mechanisms operate the same way in humans, we could be on our way toward developing new strategies for preventing or treating asthma."

Demehri S, Morimoto M, Holtzman MJ, Kopan R. Skin-derived TSLP triggers progression from epidermal-barrier defects to asthma. Public Library of Science Biology. May 19, 2009.

Funding from the National Institute of General Medical Sciences, Washington University, the Toyobo Biotechnology Foundation Long-term Research Grant and the Japanese Society for the Promotion of Science supported this research.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked third in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>