Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover novel chemical route to form organic molecules

16.01.2012
An international team of scientists led by University of Hawai'i at Mânoa Professor Ralf I. Kaiser, Alexander M. Mebel of Florida International University, and Alexander Tielens of Leiden Observatory in the Netherlands, discovered a novel chemical route to form polycyclic aromatic hydrocarbons (PAHs) – complex organic molecules such as naphthalene carrying fused benzene rings – in ultra-cold regions of interstellar space. The team announced their findings in the January 3 issue of Proceedings of the National Academy of Sciences. Funding for the study was provided by the U.S. Department of Energy, Basic Energy Sciences.

These findings have crucial implications not only to reduce the emission of PAHs as toxic byproducts from internal combustion engines, but also rationalize the synthetic routes to a key class of organic molecules in the interstellar medium associated with the origins of life.


This graphic depicts PAH formation from combustion processes to interstellar space. Credit: Ralf Kaiser

On Earth, PAHs are associated with incomplete com­bus­tion processes and can be formed readily at elevated temperatures in combustion engines of cars and in cigarette smoke. Once liberated into the am­bient environ­ment, PAHs can be transferred into the lungs by inhalation and are strongly implicated in the degradation of hu­man health, particularly due to their high carcino­ge­nic risk po­­ten­­tial. PAHs are also se­rious water pollutants of marine ecosystems and bioaccumulate in the fatty tissue of living organisms. Together with leafy vegetables, where PAHs deposit easily, they have been further linked to soil contamination, food poisoning, liver lesions, and tumor growth.

Whereas on Earth, PAHs are classified as highly toxic, PAHs have been dubbed as the 'cradle of life' in the interstellar medium and are considered as key players in the astrobiological evolution. On the molecular level, functionalized PAHs carrying carbonyl and hydroxyl groups were found in organic extracts from the Murchison meteorite and form membrane-like boundary structures, the first in­dica­tions of a cell type structure, which are requisite to the origin of life. The compounds that are water soluble form non-soluble vesicles, constituting molecules that possess both polar and non-polar components. The hollow droplets formed by this lipid multilayer are essential for the origin of life process since they provide an environment in which the functionalized PAHs can evolve by isolating and protecting them from the surrounding medium.

Scientists have been researching the formation of PAHs in combustion flames and in the interstellar medium for decades, but the formation mechanism of even the simplest PAH prototype – the naphthalene molecule (C10H8) as present in earthly mothballs - has remained an open question. Textbook knowledge postulates that classical reaction mechanisms involve complex reactions following hydrogen abstraction and acetylene addition (HACA) sequences with substantial 'activation energies.' These processes can only operate at high temperatures of a few 1,000 K as present, for instance, in combustion processes and in the outflows of carbon-rich stars and planetary nebulae. However, in recent years it has become quite clear that interstellar PAHs are rapidly destroyed in the interstellar medium upon photolysis, interstellar shock waves driven by supernova explosions, and energetic cosmic rays. The destruction time scales are much shorter than the timescale for injection of new material into the interstellar medium by carbon-rich Asymptotic Giant Branch (AGB) stars and carbon-rich planetary nebulae as the descendants of AGB stars. Therefore, the ubiquitous presence of PAHs in the interstellar medium implies a cru­cial, previously unexplained route to a fast chemical growth of PAHs in the cold environment of the interstellar medium at temperatures down to 10 K, where the classical HACA reaction mechanism cannot function, since entrance barriers (classical 'activation energies') cannot be overcome.

To unravel the formation of naphthalene as the simplest representative of PAHs, University of Hawai'i at Mânoa chemists Dorian S.N. Parker, Fangtong Zhang, Seol Kim, and Ralf I. Kaiser conducted gas phase crossed molecular beam experiments in their laboratory and presented that naphthalene can be formed as a consequence of a single collision event via a barrier-less and exoergic reaction between the phenyl radical and vinylacetylene involving a van-der-Waals complex and submerged barrier in the entrance channel. Angular resolved mass spectrometer measurements of the reaction products together with isotopic labeling confirmed that naphthalene plus a single hydrogen atom, were produced. To support the derived mechanism involved in the formation of naphthalene, theoretical chemists at Florida International University (Alex Landera, Vadim V. Kislov, Alexander Mebel), merged the experimental results with theoretical computations. Theoretical computations also provide the three-dimensional distribution of electrons in atoms and thus the overall energy level of a molecule. Mebel's computations showed that naphthalene is formed from the reaction of a single phenyl radical colliding with vinylacetylene. Most importantly, since the temperatures of cold molecular clouds are very low (10 K), the computations indicate that the reaction has no entrance barrier ('activation energy').

"These findings chal­len­ge conventional wisdom that PAH-formation only occurs at high tem­pe­ra­tures such as in combustion systems and implies that low tem­pe­ra­tu­re chemistry can initiate the synthesis of the very first PAH in the interstellar medium," said co-author Tielens.

In the future, the team plans to expand these studies to unravel the formation routes to more complex PAHs like phenan­thre­ne and anthracene, and also to nitrogen-substituted PAHs such as indole and quinoline. This concept can be also expanded to functionalized PAHs with organic side chains thus bringing researchers closer to solving the decade old puzzle of how complex PAHs and their derivatives can be synthesized in combustion flames and in cold interstellar space.

Ralf Kaiser | EurekAlert!
Further information:
http://www.hawaii.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>