Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover How Cells Limit Inflammation In Lung Injury

15.12.2011
Researchers at the University of Illinois at Chicago College of Medicine have found in an animal model of acute lung injury a molecular mechanism that allows cells of the immune system to reduce tissue damage from inflammation.

The study is reported in Nature Immunology.

Inflammation is part of the normal response to infection. One aspect of inflammation is the production of negatively charged oxygen-rich molecules by specialized white blood cells called phagocytes. The molecules, called reactive oxygen species (ROS), help to break up bacteria, allowing the phagocytes to "mop up" the broken pieces and clear out the infection. Unfortunately, ROS can also cause damage to normal tissue.

The UIC researchers found that a channel through the cell membrane of phagocytes is able to modulate this destructive phase of inflammation.

"Although the channel, called TRPM2, is found in many cell types in the immune system, including phagocytes, it’s function in these cells has been unknown," said Anke Di, UIC research assistant professor in pharmacology and first author of the study.

The researchers were able to show that TRPM2 had a protective anti-inflammatory role in the animal model of ALI, and, further, it played a previously unknown role in protecting against inflammation and tissue injury generally.

TRPM2’s protective effect was a result of its ability to dampen the production of the negatively charged ROS by modulating the electrochemical gradient -- the difference in charge between molecules within the cell and outside the plasma membrane of the cell.

ALI and its more severe form, acute respiratory distress syndrome (ARDS) result from pulmonary edema (leaky blood vessels) and inflammation. Both direct lung injury from infection and indirect lung injury from trauma, sepsis, pancreatitis, transfusions, radiation exposure and drug overdose can trigger ALI. It is fatal in almost 40 percent of cases.

Inflammation plays an important role in ALI and a number of other human diseases, said Dr. Asrar Malik, UIC Schweppe Family Distinguished Professor and head of pharmacology and principal investigator of the study. Understanding how inflammatory damage to tissues is controlled normally may help develop therapies in the future, he said.

The study was supported by the Francis Families Foundation through the Parker B. Francis Fellowship Program, and the National Institutes of Health. Malik, Di, Xiao-Pei Gao, Feng Qian, Takeshi Kawamura, Jin Han, Claudie Hecquet, Richard Ye and Stephen Vogel, all of the UIC department of pharmacology and Center for Lung and Vascular Biology, contributed equally to the study.

For more information about the University of Illinois Medical Center, visit www.uillinoismedcenter.org

Jeanne Galatzer-Levy | Newswise Science News
Further information:
http://www.uillinoismedcenter.org

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>