Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Brain Circuits Enabling Hearing Develop Without Sensory Experience

22.06.2010
Using a newly applied scientific technique, researchers at the Keck School of Medicine of the University of Southern California (USC) have reached surprising findings about the role of nature versus nurture in the development of the neural circuits in the auditory cortex, the area of the brain that is responsible for processing information about sound. The discoveries will be published in the June 17 issue of Nature journal.

Two research teams at the Zilkha Neurogenetic Institute (ZNI) found that before an animal model had any hearing experience, the brain’s elementary thalamocortical circuits with balanced excitation and inhibition functions – a feature of brain activity essential for normal functions -- had already formed.

“The scientific view had been that sensory experience should play an instructive role in the initial formation of appropriate brain circuits, so this is a big surprise,” said Li Zhang, assistant professor of Physiology and Biophysics at the Keck School of Medicine, researcher at ZNI and principal investigator on the study. “Because the circuits had already formed, no sensory experience was required.”

With an eye toward future medical advances, the study is a step in addressing a major debate in neuroscience over the last century: What are the roles of genetics and environment in the development of the human nervous system?

“In general we know that both factors play essential roles in the establishment of neural circuits,” said Zhang. “The question is which factor plays a dominant role in the different stages of development, and how. It’s a difficult question to resolve because of the dauntingly complex structure of the brain.”

Their second finding is about how the circuits change during development. They found that after the onset of hearing an elegant refinement of the neuron’s excitation function takes place.

“Previously, it was thought that a pruning of profuse connectivity was responsible for the sharpening of sensory receptive fields of neurons, which leads to improved sensory processing during development,” said Zhang. “We now see that the sharpening depends more on fine adjustments in the strength of excitatory neural connections, and that modulations of the excitatory and inhibitory connections lead to a slight breakdown of the priorly formed excitation–inhibition balance.”

Key to these findings, Zhang said, was a new method of studying the functional neural circuitry of the brain. In the experimental setting, the researchers surgically exposed the cortex of the brain of a young anesthetized rat. They used glass microelectrodes to reach and patch onto neurons buried in the cortical tissue, and then break into their membranes in order to monitor their electrical activity. That allowed the researchers to separately record the inhibition and excitation functions of the neurons.

“This is the first time anyone has applied this cutting-edge electrophysiological technique – in vivo whole-cell voltage-clamp recording – to the developing cortex of the brain,” Zhang said. “Previous hypotheses were limited by techniques that couldn’t reveal detailed structure and subtle changes.”

One research team was led by Zhang, and the other was led by Huizhong W. Tao, an assistant professor in the Department of Cell and Neurobiology at the Keck School.

Currently, Zhang’s research team is examining how the neural circuitry is affected when animals are exposed to noise. “One potential extension of this research line is in looking at how environmental factors play a role in further sculpting the circuits during later development,” he said. In the future, he noted, such research may open the door to insights about the cause of disorders such as autism, in which it is speculated that the auditory system is a major target.

Leslie Ridgeway | Newswise Science News
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>