Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Brain Circuits Enabling Hearing Develop Without Sensory Experience

22.06.2010
Using a newly applied scientific technique, researchers at the Keck School of Medicine of the University of Southern California (USC) have reached surprising findings about the role of nature versus nurture in the development of the neural circuits in the auditory cortex, the area of the brain that is responsible for processing information about sound. The discoveries will be published in the June 17 issue of Nature journal.

Two research teams at the Zilkha Neurogenetic Institute (ZNI) found that before an animal model had any hearing experience, the brain’s elementary thalamocortical circuits with balanced excitation and inhibition functions – a feature of brain activity essential for normal functions -- had already formed.

“The scientific view had been that sensory experience should play an instructive role in the initial formation of appropriate brain circuits, so this is a big surprise,” said Li Zhang, assistant professor of Physiology and Biophysics at the Keck School of Medicine, researcher at ZNI and principal investigator on the study. “Because the circuits had already formed, no sensory experience was required.”

With an eye toward future medical advances, the study is a step in addressing a major debate in neuroscience over the last century: What are the roles of genetics and environment in the development of the human nervous system?

“In general we know that both factors play essential roles in the establishment of neural circuits,” said Zhang. “The question is which factor plays a dominant role in the different stages of development, and how. It’s a difficult question to resolve because of the dauntingly complex structure of the brain.”

Their second finding is about how the circuits change during development. They found that after the onset of hearing an elegant refinement of the neuron’s excitation function takes place.

“Previously, it was thought that a pruning of profuse connectivity was responsible for the sharpening of sensory receptive fields of neurons, which leads to improved sensory processing during development,” said Zhang. “We now see that the sharpening depends more on fine adjustments in the strength of excitatory neural connections, and that modulations of the excitatory and inhibitory connections lead to a slight breakdown of the priorly formed excitation–inhibition balance.”

Key to these findings, Zhang said, was a new method of studying the functional neural circuitry of the brain. In the experimental setting, the researchers surgically exposed the cortex of the brain of a young anesthetized rat. They used glass microelectrodes to reach and patch onto neurons buried in the cortical tissue, and then break into their membranes in order to monitor their electrical activity. That allowed the researchers to separately record the inhibition and excitation functions of the neurons.

“This is the first time anyone has applied this cutting-edge electrophysiological technique – in vivo whole-cell voltage-clamp recording – to the developing cortex of the brain,” Zhang said. “Previous hypotheses were limited by techniques that couldn’t reveal detailed structure and subtle changes.”

One research team was led by Zhang, and the other was led by Huizhong W. Tao, an assistant professor in the Department of Cell and Neurobiology at the Keck School.

Currently, Zhang’s research team is examining how the neural circuitry is affected when animals are exposed to noise. “One potential extension of this research line is in looking at how environmental factors play a role in further sculpting the circuits during later development,” he said. In the future, he noted, such research may open the door to insights about the cause of disorders such as autism, in which it is speculated that the auditory system is a major target.

Leslie Ridgeway | Newswise Science News
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

nachricht Calcium may play a role in the development of Parkinson's disease
19.02.2018 | University of Cambridge

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>