Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Brain Circuits Enabling Hearing Develop Without Sensory Experience

22.06.2010
Using a newly applied scientific technique, researchers at the Keck School of Medicine of the University of Southern California (USC) have reached surprising findings about the role of nature versus nurture in the development of the neural circuits in the auditory cortex, the area of the brain that is responsible for processing information about sound. The discoveries will be published in the June 17 issue of Nature journal.

Two research teams at the Zilkha Neurogenetic Institute (ZNI) found that before an animal model had any hearing experience, the brain’s elementary thalamocortical circuits with balanced excitation and inhibition functions – a feature of brain activity essential for normal functions -- had already formed.

“The scientific view had been that sensory experience should play an instructive role in the initial formation of appropriate brain circuits, so this is a big surprise,” said Li Zhang, assistant professor of Physiology and Biophysics at the Keck School of Medicine, researcher at ZNI and principal investigator on the study. “Because the circuits had already formed, no sensory experience was required.”

With an eye toward future medical advances, the study is a step in addressing a major debate in neuroscience over the last century: What are the roles of genetics and environment in the development of the human nervous system?

“In general we know that both factors play essential roles in the establishment of neural circuits,” said Zhang. “The question is which factor plays a dominant role in the different stages of development, and how. It’s a difficult question to resolve because of the dauntingly complex structure of the brain.”

Their second finding is about how the circuits change during development. They found that after the onset of hearing an elegant refinement of the neuron’s excitation function takes place.

“Previously, it was thought that a pruning of profuse connectivity was responsible for the sharpening of sensory receptive fields of neurons, which leads to improved sensory processing during development,” said Zhang. “We now see that the sharpening depends more on fine adjustments in the strength of excitatory neural connections, and that modulations of the excitatory and inhibitory connections lead to a slight breakdown of the priorly formed excitation–inhibition balance.”

Key to these findings, Zhang said, was a new method of studying the functional neural circuitry of the brain. In the experimental setting, the researchers surgically exposed the cortex of the brain of a young anesthetized rat. They used glass microelectrodes to reach and patch onto neurons buried in the cortical tissue, and then break into their membranes in order to monitor their electrical activity. That allowed the researchers to separately record the inhibition and excitation functions of the neurons.

“This is the first time anyone has applied this cutting-edge electrophysiological technique – in vivo whole-cell voltage-clamp recording – to the developing cortex of the brain,” Zhang said. “Previous hypotheses were limited by techniques that couldn’t reveal detailed structure and subtle changes.”

One research team was led by Zhang, and the other was led by Huizhong W. Tao, an assistant professor in the Department of Cell and Neurobiology at the Keck School.

Currently, Zhang’s research team is examining how the neural circuitry is affected when animals are exposed to noise. “One potential extension of this research line is in looking at how environmental factors play a role in further sculpting the circuits during later development,” he said. In the future, he noted, such research may open the door to insights about the cause of disorders such as autism, in which it is speculated that the auditory system is a major target.

Leslie Ridgeway | Newswise Science News
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

nachricht Synthetic nanoparticles achieve the complexity of protein molecules
24.01.2017 | Carnegie Mellon University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>