Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover that changes in bioelectric signals cause tadpoles to grow eyes in back, tail

08.12.2011
For the first time, scientists have altered natural bioelectrical communication among cells to directly specify the type of new organ to be created at a particular location within a vertebrate organism.

Using genetic manipulation of membrane voltage in Xenopus (frog) embryos, biologists at Tufts University's School of Arts and Sciences were able to cause tadpoles to grow eyes outside of the head area.


Changing the bioelectric voltage in embryonic frog cell in tadpole's back caused cell to develop into a functioning eye. Credit: Michael Levin and Sherry Aw

The researchers achieved most surprising results when they manipulated membrane voltage of cells in the tadpole's back and tail, well outside of where the eyes could normally form. "The hypothesis is that for every structure in the body there is a specific membrane voltage range that drives organogenesis," said Pai. "These were cells in regions that were never thought to be able to form eyes. This suggests that cells from anywhere in the body can be driven to form an eye."

To do this, they changed the voltage gradient of cells in the tadpoles' back and tail to match that of normal eye cells. The eye-specific gradient drove the cells in the back and tail—which would normally develop into other organs—to develop into eyes.

These findings break new ground in the field of biomedicine because they identify an entirely new control mechanism that can be capitalized upon to induce the formation of complex organs for transplantation or regenerative medicine applications, according to Michael Levin, Ph.D., professor of biology and director of the Center for Regenerative and Developmental Biology at Tufts University's School of Arts and Sciences. Levin is senior and corresponding author on the work published in the journal Development online December 7 2011, in advance of print.

"These results reveal a new regulator of eye formation during development, and suggest novel approaches for the detection and repair of birth defects affecting the visual system," he said. "Aside from the regenerative medicine applications of this new technique for eyes, this is a first step to cracking the bioelectric code."

Tufts post-doctoral fellow Vaibhav P. Pai Ph.D., is first author of the paper, entitled "Transmembrane Voltage Potential Controls Embryonic Eye Patterning in Xenopus laevis." .

Signals Turn On Eye Genes

From the outset of their research, the Tufts' biologists wanted to understand how cells use natural electrical signals to communicate in their task of creating and placing body organs. In recent research, Tufts biologist Dany S. Adams showed that bioelectrical signals are necessary for normal face formation in the Xenopus (frog) embryos. In the current set of experiments, the Levin lab identified and marked hyperpolarized (more negatively charged) cell clusters located in the head region of the frog embryo.

They found that these cells expressed genes that are involved in building the eye called Eye Field Transcription Factors (EFTFs). Sectioning of the embryo through the developed eye and analyzing the eye regions under fluorescence microscopy showed that the hyperpolarized cells contributed to development of the lens and retina. The researchers hypothesized that these cells turned on genes that are necessary for building the eye.

Changing the Signals Lead to Defects

Next, the researchers were able to show that changing the bioelectric code, or depolarizing these cells, affected normal eye formation. They injected the cells with mRNA encoding ion channels, which are a class of gating proteins embedded in the membranes of the cell. Like gates, each ion channel protein selectively allows a charged particle to pass in and out of the cell.

Using individual ion channels that allow, the researchers changed the membrane potential of these cells. This affected expression of EFTF genes, causing abnormalities to occur: Tadpoles from these experiments were normal except that they had deformed or no eyes at all.

Further, the Tufts biologists were also able to show that they could control the incidence of abnormal eyes by manipulating the voltage gradient in the embryo. "Abnormalities were proportional to the extent of disruptive depolarization," said Pai. "We developed techniques to raise or lower voltage potential to control gene expression."

Electric Properties of Cells Can Be Manipulated to Generate Specific Organs

The researchers achieved most surprising results when they manipulated membrane voltage of cells in the tadpole's back and tail, well outside of where the eyes could normally form.

"The hypothesis is that for every structure in the body there is a specific membrane voltage range that drives organogenesis," said Pai. "By using a specific membrane voltage, we were able to generate normal eyes in regions that were never thought to be able to form eyes. This suggests that cells from anywhere in the body can be driven to form an eye."

Levin and his colleagues are pursuing further research, additionally targeting the brain, spinal cord, and limbs. The findings, he said "will allow us to have much better control of tissue and organ pattern formation in general. We are developing new applications of molecular bioelectricity in limb regeneration, brain repair, and synthetic biology." Additional authors include post-doctoral fellow Sherry Aw, Tufts Postdoctoral Associate Tal Shomrat, and Research Associate Joan M. Lemire. Funding for this research came from the National Institutes of Health.

"Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis," Vaibhav P. Pai, Sherry Aw, Tal Shormat, Joan M. Lemire, Development, published online before print December 20, 2011,doi:10.1242/dev.073759

Tufts University, located on three Massachusetts campuses in Boston, Medford/Somerville, and Grafton, and in Talloires, France, is recognized among the premier research universities in the United States. Tufts enjoys a global reputation for academic excellence and for the preparation of students as leaders in a wide range of professions. A growing number of innovative teaching and research initiatives span all Tufts campuses, and collaboration among the faculty and students in the undergraduate, graduate, and professional programs across the university's schools is widely encouraged.

Alex Reid | EurekAlert!
Further information:
http://www.tufts.edu

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>