Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers discover a switch that controls stem cell pluripotency

Scientists have found a control switch that regulates stem cell "pluripotency," the capacity of stem cells to develop into any type of cell in the human body. The discovery reveals that pluripotency is regulated by a single event in a process called alternative splicing.

Alternative splicing allows one gene to generate many different genetic messages and protein products. The researchers found that in genetic messages of a gene called FOXP1, the switch was active in embryonic stem cells but silent in "adult" cells—those that had become the specialized cells that comprise organs and perform functions.

"It opens the field to the fact that alternative splicing plays a really important role in stem cell pluripotency," said Prof. Benjamin Blencowe, principal investigator on the study and a Professor in the University of Toronto's Departments of Molecular Genetics and Banting and Best Department of Medical Research. "We're beginning to see an entirely new landscape of regulation, which will be crucial to our understanding of how to produce more effective pluripotent stem cells for therapeutic and research applications."

The findings were published in the current online edition of the scientific journal Cell.

Alternative splicing works by allowing different segments of genetic messages, also known as messenger RNAs, to be spliced in different combinations as the messages are copied from a gene's DNA. Those combinations make different messenger RNAs, which in turn become different proteins.

In stem cells, scientists have shown that a core set of proteins called transcription factors control pluripotency.

The splicing event discovered by Blencowe's team, including first author on the study Dr. Mathieu Gabut, changes the DNA binding properties of FOXP1 in a way that then controls the expression of the core pluripotency transcription factors, to facilitate maintenance of pluripotency. "As a mechanism that controls those core transcription factors, it's right at the heart of the regulatory process of pluripotency," said Blencowe.

At the same time, the mechanism represses the genes required for differentiation—the process whereby by a stem cell loses "stemness" and becomes a specific cell type that makes up an organ or performs a function.

As well, in collaboration with colleagues including Profs. Jeff Wrana and Andras Nagy in the Samuel Lunenfeld Research Institute at Mount Sinai Hospital, also Professors in U of T's Department of Molecular Genetics, the splicing switch identified by Blencowe's team was shown to play a role in "reprogramming," a potentially therapeutic technique in which researchers coax adult cells back into induced pluripotent stem cells by introducing the core transcription factors. "That's an important area in the field where we need better understanding because reprogramming, especially with human cells, is very inefficient," said Blencowe. "Often when reprogrammed stem cells are not fully reprogrammed they become tumorigenic and can lead to cancer."

Potential applications for stem-cell science include growing cells and tissues to test new drugs or to repair or replace damaged tissues in many diseases and conditions, including heart disease, diabetes, spinal cord injury and Alzheimer's disease.

As well, a better understanding of the mechanisms that regulate pluripotency, cell division and differentiation will provide knowledge of how diseases like cancer arise and suggest more targeted therapeutic approaches.

Blencowe and his lab have recently turned their attention to what might be controlling the factors that control both alternative splicing and the maintenance of stem-cell pluripotency. They have, said Blencowe, a few tantalizing glimpses. "There's still a lot to figure out, but I personally believe there is huge potential in the future. If we can fully understand the regulatory controls that allow us to make uniform populations of fully reprogrammed stem cells, there's no reason why they shouldn't be effective for many different therapies. It will come."

Funding for the study was provided by the C.H. Best Foundation, the Canadian Cancer Society, the Canadian Institutes of Health Research, Genome Canada through the Ontario Genomics Institute, the National Institutes of Health, the Ontario Ministry of Research and Innovation, and the Ontario Research Fund.

Other co-authors on the study: Payman Samavarchi-Tehrani (Centre for Systems Biology, Samuel Lunenfeld Research Institute, and Dept. of Molecular Genetics, U of T); Xinchen Wang, Valentina Slobodeniuc, Dave O'Hanlon, Shaheynoor Talukder, Qun Pan, and Timothy Hughes (Banting and Best Dept. of Medical Research, U of T, and The Donnelly Centre for Cellular and Biomolecular Research, U of T); Hoon-Ki Sung and Knut Woltjen (Centre for Stem Cells and Tissue Engineering, SLRI); Manuel Alvarez (The Donnelly Centre, and the Institute of Biomaterials and Biomedical Engineering, U of T); Esteban Mazzoni, Stephane Nedelec and Hynek Wichterle (Columbia University Medical Center); Peter Zandstra (The Donnelly Centre and IBBE).

Jim Oldfield | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>