Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover a Way to Strengthen Proteins

14.12.2009
Proteins, which perform such vital roles in our bodies as building and maintaining tissues and regulating cellular processes, are a finicky lot. In order to work properly, they must be folded just so, yet many proteins readily collapse into useless tangles when exposed to temperatures just a few degrees above normal body temperature.

This precarious stability leaves proteins and the living beings that depend upon them on the edge of a precipice, where a single destabilizing change in a key protein can lead to disease or death. It also greatly complicates the manufacture and use of proteins in research and medicine.

Finding a way to stabilize proteins could help prevent such dire consequences, reduce the very high cost of protein drugs and perhaps also help scientists understand why proteins are often so unstable in the first place. In a paper published in the Dec. 11 issue of the journal Molecular Cell, researchers at the University of Michigan and the University of Leeds describe a new strategy for stabilizing specific proteins by directly linking their stability to the antibiotic resistance of bacteria.

"The method we developed should provide an easy way to strengthen many proteins and by doing so increase their practical utility," said James Bardwell, a Howard Hughes Medical Institute investigator and professor of molecular, cellular and developmental biology at U-M.

In the new approach, the researchers found that when a protein is inserted into the middle of an antibiotic resistance marker, bacterial antibiotic resistance becomes dependent upon how stable the inserted protein is. This enabled the scientists to easily select for stabilizing mutations in proteins by using a simple life-or-death test for bacterial growth on antibiotics. The mutations the scientists identified rendered proteins more resistant to unfolding.

"This method also has allowed us to catch a glimpse of why proteins may need to be just barely stable," said Linda Foit, the graduate student at U-M who initiated the work. "The mutations that we found to enhance the stability of our model protein are mostly in key areas related to the protein's function, suggesting that this protein may need to be flexible and therefore marginally stable in order to work. It may be that, over the course of evolution, natural selection acts to optimize, rather than maximize protein stability."

The work was conducted in the laboratories of Bardwell at U-M and Sheena Radford at the University of Leeds and spearheaded by Foit in Bardwell's lab and postdoctoral fellow Gareth Morgan in the Radford lab. In addition to these researchers, the paper's authors are U-M undergraduate students Maximilian Kern, Lenz Steimer and Anne Kathrin von Hacht and Leeds technician James Titchmarsh and senior lecturer Stuart Warriner. The research was funded in part by the Howard Hughes Medical Institute, the National Institutes of Health, the Wellcome Trust and the University of Leeds.

For more information:

James Bardwell: http://www.ns.umich.edu/htdocs/public/experts/ExpDisplay.php?beginswith=Bardwell

Molecular Cell: http://www.cell.com/molecular-cell/home

Nancy Ross-Flanigan | Newswise Science News
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>