Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover a Potential New Target for Cancer Treatment

05.05.2017

Inhibition of the enzyme RIOK1could stop the growth of tumors and the development of metastases

Dr. Florian Weinberg, from Prof. Dr. Tilman Brummer’s research group at the Institute of Molecular Medicine and Cell Research (IMMZ) of the University of Freiburg, joined forces with scientists from the Departments of Clinical Pathology and Medicine I of the University Medical Centre Freiburg and the Kinghorn Cancer Centre/Garvan Insitute in Australia in an international team that has identified a new target for cancer therapy.


Depicted are lung cancer cells stained for the cytoskeleton (colored in green) and the nuclei (colored in blue). A new therapeutic method may be able to reduce the growth and aggressiveness of these cells.

Source: Florian Weinberg

The researchers discovered that the enzyme RIOK1 collaborates with the RAS protein, which is often mutated in tumors and therefore promotes tumor growth and the development of metastases. These secondary tumors are spread by the primary tumor, if it is not removed in time, and are the cause of death in most cancer patients.

The researchers believe it may be possible to use so-called inhibitors to block the enzymatic activity of RIOK1, thereby slowing down the disease’s progression. The team has recently published its findings in the translational journal EBioMedicine.

Cancer diseases are characterized by gene mutations that cause the uncontrolled growth of the body's own cells. This, in turn, results in the development of tumors. Most treatments combine surgery to remove the tumor with chemotherapy or radiation therapy, both of which are used to inhibit the fast growth of cells. Specific inhibitors can also be used as an additional or alternative therapy.

These drugs inhibit the activity of the harmful proteins and enzymes produced by the mutated genes in tumors. However, there are currently only very few ways to specifically treat RAS-driven tumors. Because roughly 30 percent of all cancer patients carry a Ras mutation in their tumors, there is a very strong need to find new ways to target RAS.

The team of scientists studied the growth behavior of human RAS-mutated lung-, breast-, and colorectal cancer cells in cell culture and animal models. In each case, they were able to genetically modify the cells, so that they were no longer able to produce RIOK1, a method that mimics the effects of a still to be developed RIOK1 inhibitor. By this approach, the authors were able to reduce the growth and aggressiveness of the cancer cells.

Especially in the animal models, the researchers observed that the modified cells were no longer able to form metastases. RIOK1 belongs to the enzyme family of protein kinases for which inhibitors are already successfully used in cancer therapy. Therefore, the scientists believe that similar substances inhibiting the enzymatic activity of RIOK1 could be developed in the near future. In addition, RIOK1 could be used to predict the progression of lung and breast cancer more accurately, as the researchers observed an increased production of RIOK1 in the tumor tissue of patients who had a poorer prognosis.

The researchers stated that more studies are needed to confirm RIOK1 as a target for cancer therapy, however. It would be important, for example, to understand the exact mechanism through which the enzyme supports cancer growth and metastasis.

It is also essential that inhibitors be tested first on model organisms before the drugs can be tested in clinical studies. The researchers’ initial studies on roundworms and human cells have demonstrated that healthy body cells are either only partially affected or not affected at all by the loss of RIOK1, because they do not depend on the enzyme. This would mean that, at the same time, cancer cells would be inhibited from growing and from spreading new tumors.

The study was funded by the Cluster of Excellence BIOSS Centre for Biological Signalling Studies and the Collaborative Research Center 850 “Control of Cell Motility in Morphogenesis, Cancer Invasion and Metastasis” at the University of Freiburg.

Caption:
Depicted are lung cancer cells stained for the cytoskeleton (colored in green) and the nuclei (colored in blue). A new therapeutic method may be able to reduce the growth and aggressiveness of these cells.
Source: Florian Weinberg

Original Publication:
The Atypical Kinase RIOK1 Promotes Tumor Growth and Invasive Behavior.
Florian Weinberg, Nadine Reischmann, Lisa Fauth, Sanaz Taromi, Justin Mastroianni, Martin Köhler, Sebastian Halbach, Andrea C. Becker, Niantao Deng, Tatjana Schmitz, Franziska Maria Uhl, Nicola Herbener, Bianca Riedel, Fabian Beier, Alexander Swarbrick, Silke Lassmann, Jörn Dengjel, Robert Zeiser, Tilman Brummer
DOI: http://dx.doi.org/10.1016/j.ebiom.2017.04.015

Contact:
Prof. Dr. Tilman Brummer
Institute of Molecular Medicine and Cell Research
University of Freiburg
Phone: +49 (0)761 / 203 - 9610
E-Mail: tilman.brummer@zbsa.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm-en/2017/researchers-discover-a-potential-new-t...

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

Further reports about: CANCER cancer cells cancer therapy enzymatic activity enzyme tumors

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>