Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover a key to making new muscles

08.09.2014

A new study finds that cyclic bursts of a STAT3 inhibitor can replenish muscle stem cells and promote their differentiation into muscle fibers. The findings are an important step toward developing and maintaining new muscle to treat muscle diseases.

Researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham) have developed a novel technique to promote tissue repair in damaged muscles. The technique also creates a sustainable pool of muscle stem cells needed to support multiple rounds of muscle repair.


This image depicts normal muscle (left) and muscle from Muscular Dystrophy (right).

Credit: Pathology

The study, published September 7 in Nature Medicine, provides promise for a new therapeutic approach to treating the millions of people suffering from muscle diseases, including those with muscular dystrophies and muscle wasting associated with cancer and aging.

There are two important processes that need to happen to maintain skeletal-muscle health. First, when muscle is damaged by injury or degenerative disease such as muscular dystrophy, muscle stem cells—or satellite cells—need to differentiate into mature muscle cells to repair injured muscles.

Second, the pool of satellite cells needs to be replenished so there is a supply to repair muscle in case of future injuries. In the case of muscular dystrophy, the chronic cycles of muscle regeneration and degeneration that involve satellite-cell activation exhaust the muscle stem-cell pool to the point of no return.

"Our study found that by introducing an inhibitor of the STAT3 protein in repeated cycles, we could alternately replenish the pool of satellite cells and promote their differentiation into muscle fibers," said Alessandra Sacco, Ph.D., assistant professor in the Development, Aging, and Regeneration Program at Sanford-Burnham. "Our results are important because the process works in mice and in human muscle cells."

"Our next step is to see how long we can extend the cycling pattern, and test some of the STAT3 inhibitors currently in clinical trials for other indications such as cancer, as this could accelerate testing in humans," added Sacco.

"These findings are very encouraging. Currently, there is no cure to stop or reverse any form of muscle-wasting disorders—only medication and therapy that can slow the process," said Vittorio Sartorelli, M.D., chief of the Laboratory of Muscle Stem Cells and Gene Regulation and deputy scientific director at the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS). "A treatment approach consisting of cyclic bursts of STAT3 inhibitors could potentially restore muscle mass and function in patients, and this would be a very significant breakthrough."

Revealing the mechanism of STAT3

STAT3 (signal transducer and activator of transcription 3) is a protein that activates the transcription of genes in response to IL-6, a signaling protein released by cells in response to injury and inflammation. Prior to the study, scientists knew that STAT3 played a complex role in skeletal muscle, promoting tissue repair in some instances and hindering it in others. But the precise mechanism of how STAT3 worked was a mystery.

The research team first used normally aged mice and mice models of a form of muscular dystrophy that resembles the human disease to see what would happen if they were given a drug to inhibit STAT3. They found that the inhibitor initially promoted satellite-cell replication, followed by differentiation of the satellite cells into muscle fibers. When they injected the STAT3 inhibitor every seven days for 28 days, they found an overall improvement in skeletal-muscle repair, and an increase in the size of muscle fibers.

"We were pleased to find that we achieved similar results when we performed the experiments in human muscle cells," said Sacco. "We have discovered that by timing the inhibition of STAT3—like an "on/off" light switch—we can transiently expand the satellite-cell population followed by their differentiation into mature muscle cells."

###

About Sanford-Burnham Medical Research Institute

Sanford-Burnham Medical Research Institute is dedicated to discovering the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Sanford-Burnham takes a collaborative approach to medical research with major programs in cancer, neurodegeneration and stem cells, diabetes, and infectious, inflammatory, and childhood diseases. The Institute is recognized for its National Cancer Institute-designated Cancer Center, its NIH-designated Neuroscience Center Cores, and expertise in drug discovery technologies. Sanford-Burnham is a nonprofit, independent institute that employs more than 1,000 scientists and staff in San Diego (La Jolla), Calif., and Orlando (Lake Nona), Fla. For more information, visit us at sanfordburnham.org.

Sanford-Burnham can also be found on Facebook at facebook.com/sanfordburnham and on Twitter @sanfordburnham.

Deborah Robison | Eurek Alert!

Further reports about: Cancer diseases genes injury mechanism promote protein repair satellite therapy transcription

More articles from Life Sciences:

nachricht Scientists decipher key principle behind reaction of metalloenzymes
15.01.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

nachricht New method to map miniature brain circuits
15.01.2018 | The Francis Crick Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

Black hole spin cranks-up radio volume

15.01.2018 | Physics and Astronomy

A matter of mobility: multidisciplinary paper suggests new strategy for drug discovery

15.01.2018 | Life Sciences

New method to map miniature brain circuits

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>