Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover a key to making new muscles

08.09.2014

A new study finds that cyclic bursts of a STAT3 inhibitor can replenish muscle stem cells and promote their differentiation into muscle fibers. The findings are an important step toward developing and maintaining new muscle to treat muscle diseases.

Researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham) have developed a novel technique to promote tissue repair in damaged muscles. The technique also creates a sustainable pool of muscle stem cells needed to support multiple rounds of muscle repair.


This image depicts normal muscle (left) and muscle from Muscular Dystrophy (right).

Credit: Pathology

The study, published September 7 in Nature Medicine, provides promise for a new therapeutic approach to treating the millions of people suffering from muscle diseases, including those with muscular dystrophies and muscle wasting associated with cancer and aging.

There are two important processes that need to happen to maintain skeletal-muscle health. First, when muscle is damaged by injury or degenerative disease such as muscular dystrophy, muscle stem cells—or satellite cells—need to differentiate into mature muscle cells to repair injured muscles.

Second, the pool of satellite cells needs to be replenished so there is a supply to repair muscle in case of future injuries. In the case of muscular dystrophy, the chronic cycles of muscle regeneration and degeneration that involve satellite-cell activation exhaust the muscle stem-cell pool to the point of no return.

"Our study found that by introducing an inhibitor of the STAT3 protein in repeated cycles, we could alternately replenish the pool of satellite cells and promote their differentiation into muscle fibers," said Alessandra Sacco, Ph.D., assistant professor in the Development, Aging, and Regeneration Program at Sanford-Burnham. "Our results are important because the process works in mice and in human muscle cells."

"Our next step is to see how long we can extend the cycling pattern, and test some of the STAT3 inhibitors currently in clinical trials for other indications such as cancer, as this could accelerate testing in humans," added Sacco.

"These findings are very encouraging. Currently, there is no cure to stop or reverse any form of muscle-wasting disorders—only medication and therapy that can slow the process," said Vittorio Sartorelli, M.D., chief of the Laboratory of Muscle Stem Cells and Gene Regulation and deputy scientific director at the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS). "A treatment approach consisting of cyclic bursts of STAT3 inhibitors could potentially restore muscle mass and function in patients, and this would be a very significant breakthrough."

Revealing the mechanism of STAT3

STAT3 (signal transducer and activator of transcription 3) is a protein that activates the transcription of genes in response to IL-6, a signaling protein released by cells in response to injury and inflammation. Prior to the study, scientists knew that STAT3 played a complex role in skeletal muscle, promoting tissue repair in some instances and hindering it in others. But the precise mechanism of how STAT3 worked was a mystery.

The research team first used normally aged mice and mice models of a form of muscular dystrophy that resembles the human disease to see what would happen if they were given a drug to inhibit STAT3. They found that the inhibitor initially promoted satellite-cell replication, followed by differentiation of the satellite cells into muscle fibers. When they injected the STAT3 inhibitor every seven days for 28 days, they found an overall improvement in skeletal-muscle repair, and an increase in the size of muscle fibers.

"We were pleased to find that we achieved similar results when we performed the experiments in human muscle cells," said Sacco. "We have discovered that by timing the inhibition of STAT3—like an "on/off" light switch—we can transiently expand the satellite-cell population followed by their differentiation into mature muscle cells."

###

About Sanford-Burnham Medical Research Institute

Sanford-Burnham Medical Research Institute is dedicated to discovering the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Sanford-Burnham takes a collaborative approach to medical research with major programs in cancer, neurodegeneration and stem cells, diabetes, and infectious, inflammatory, and childhood diseases. The Institute is recognized for its National Cancer Institute-designated Cancer Center, its NIH-designated Neuroscience Center Cores, and expertise in drug discovery technologies. Sanford-Burnham is a nonprofit, independent institute that employs more than 1,000 scientists and staff in San Diego (La Jolla), Calif., and Orlando (Lake Nona), Fla. For more information, visit us at sanfordburnham.org.

Sanford-Burnham can also be found on Facebook at facebook.com/sanfordburnham and on Twitter @sanfordburnham.

Deborah Robison | Eurek Alert!

Further reports about: Cancer diseases genes injury mechanism promote protein repair satellite therapy transcription

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>