Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover a New Class of Highly Electronegative Chemical Species

12.10.2010
An international team of researchers has discovered a new class of highly electronegative chemical species called hyperhalogens, which use superhalogens as building blocks around a metal atom. The new chemical species may have application in many industries.

Researchers from Virginia Commonwealth University, McNeese State University in Lake Charles, La., and the University of Konstanz in Germany report their discovery in the Oct. 6 international chemistry journal Angewandte Chemie International Edition. The journal designated the paper as “very important,” recognition granted to only 5 percent of papers it receives.

Chlorine is one of the elements called halogens, a group that includes fluorine, bromine, and iodine. These chemicals are known for their disinfecting and deodorizing power and are also used in some medications and industrial processes. Researchers say that hyperhalogens could be useful in industries where large amounts of halogens are now needed to make cleaning or decontamination products.

Chemists and physicists like Puru Jena, Ph.D., distinguished professor of physics at VCU, know halogens for their reactivity, a characteristic that makes the halogen elements want to bond with another element or a compound by taking one electron. Chlorine, for example, likes being paired with sodium to make table salt. Sodium wants to give away an electron and chlorine wants to take that electron in what Jena calls “a perfect marriage.”

“Halogens only need one electron to reach their happy state,” said Jena. “They’re much more stable as a negative ion than as a neutral atom.”

Once the atom takes an electron and becomes a stable, negative ion, the energy it gains is measured by its electron affinity. In chemistry’s periodic table, chlorine has the highest electron affinity, measured at 3.6 electron volts, or eV.

One area of Jena’s research focuses on finding ways to make new classes of compounds with large electron affinities.

In 1962, English chemist Neil Bartlett found that platinum hexafluoride reacts with xenon to make a noble gas compound. Scientists were surprised because xenon was one of the stable or “noble” gases that rarely react with other elements. A dozen years later, two Soviet scientists, Gennady Gutsev and Alexander Boldyrev, showed that a larger class of molecules with a metal atom at the center surrounded by halogen atoms, similar to platinum hexafluoride, possesses electron affinities larger than that of chlorine. They termed these molecules “superhalogens.”

“For example, you could take a sodium atom and a chlorine atom to make a sodium chloride molecule and then attach a second chlorine atom. That compound would then want another electron because of the extra chlorine,” Jena said. “All of a sudden, the electron affinity, which is the characteristic we’re after, becomes almost a factor of two larger than that of the chlorine atom. It becomes a superhalogen.”

Superhalogens have similar, improved properties as halogens, Jena said.

Jena, together with Anil Kandalam, Ph.D., assistant professor at McNeese State University, theorized that they could push the electron affinity of a cluster or a molecule even higher, by using superhalogens as building blocks, instead of halogens, around a metal atom. The theoretical model was tested through experimental studies led by Gerd F. Ganteför, Ph.D., at the University of Konstanz. They termed these species with unusually large electron affinities as “hyperhalogens.”

“We used gold as the metal and surrounded it with two boron-dioxide superhalogens and got a hyperhalogen with an even greater electron affinity,” Jena said.

The team’s synergistic approach involving theory and experiment produced a gold-borate hyperhalogen with an electron affinity of 5.7 eV. The team now is testing a hyperhalogen constructed with four boron-dioxide superhalogens and have reached an electron affinity of 7 eV, with a goal of building a hyperhalogen with 10 eV. These new hyperhalogens may lead to additional discoveries of novel chemicals, Jena said.

The theoretical investigations for the project were conducted by Jena and graduate student Mary Willis at VCU, along with Kandalam. The experimental work was conducted by Ganteför and graduate student Matthias Götz at the University of Konstanz.

The work was supported in part by the federal Defense Threat Reduction Agency and the Department of Energy.

About VCU and the VCU Medical Center: Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 32,000 students in 211 certificate and degree programs in the arts, sciences and humanities. Sixty-nine of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers.

Sathya Achia Abraham | Newswise Science News
Further information:
http://www.vcu.edu

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

Guardians of the Gate

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>