Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover a New Class of Highly Electronegative Chemical Species

12.10.2010
An international team of researchers has discovered a new class of highly electronegative chemical species called hyperhalogens, which use superhalogens as building blocks around a metal atom. The new chemical species may have application in many industries.

Researchers from Virginia Commonwealth University, McNeese State University in Lake Charles, La., and the University of Konstanz in Germany report their discovery in the Oct. 6 international chemistry journal Angewandte Chemie International Edition. The journal designated the paper as “very important,” recognition granted to only 5 percent of papers it receives.

Chlorine is one of the elements called halogens, a group that includes fluorine, bromine, and iodine. These chemicals are known for their disinfecting and deodorizing power and are also used in some medications and industrial processes. Researchers say that hyperhalogens could be useful in industries where large amounts of halogens are now needed to make cleaning or decontamination products.

Chemists and physicists like Puru Jena, Ph.D., distinguished professor of physics at VCU, know halogens for their reactivity, a characteristic that makes the halogen elements want to bond with another element or a compound by taking one electron. Chlorine, for example, likes being paired with sodium to make table salt. Sodium wants to give away an electron and chlorine wants to take that electron in what Jena calls “a perfect marriage.”

“Halogens only need one electron to reach their happy state,” said Jena. “They’re much more stable as a negative ion than as a neutral atom.”

Once the atom takes an electron and becomes a stable, negative ion, the energy it gains is measured by its electron affinity. In chemistry’s periodic table, chlorine has the highest electron affinity, measured at 3.6 electron volts, or eV.

One area of Jena’s research focuses on finding ways to make new classes of compounds with large electron affinities.

In 1962, English chemist Neil Bartlett found that platinum hexafluoride reacts with xenon to make a noble gas compound. Scientists were surprised because xenon was one of the stable or “noble” gases that rarely react with other elements. A dozen years later, two Soviet scientists, Gennady Gutsev and Alexander Boldyrev, showed that a larger class of molecules with a metal atom at the center surrounded by halogen atoms, similar to platinum hexafluoride, possesses electron affinities larger than that of chlorine. They termed these molecules “superhalogens.”

“For example, you could take a sodium atom and a chlorine atom to make a sodium chloride molecule and then attach a second chlorine atom. That compound would then want another electron because of the extra chlorine,” Jena said. “All of a sudden, the electron affinity, which is the characteristic we’re after, becomes almost a factor of two larger than that of the chlorine atom. It becomes a superhalogen.”

Superhalogens have similar, improved properties as halogens, Jena said.

Jena, together with Anil Kandalam, Ph.D., assistant professor at McNeese State University, theorized that they could push the electron affinity of a cluster or a molecule even higher, by using superhalogens as building blocks, instead of halogens, around a metal atom. The theoretical model was tested through experimental studies led by Gerd F. Ganteför, Ph.D., at the University of Konstanz. They termed these species with unusually large electron affinities as “hyperhalogens.”

“We used gold as the metal and surrounded it with two boron-dioxide superhalogens and got a hyperhalogen with an even greater electron affinity,” Jena said.

The team’s synergistic approach involving theory and experiment produced a gold-borate hyperhalogen with an electron affinity of 5.7 eV. The team now is testing a hyperhalogen constructed with four boron-dioxide superhalogens and have reached an electron affinity of 7 eV, with a goal of building a hyperhalogen with 10 eV. These new hyperhalogens may lead to additional discoveries of novel chemicals, Jena said.

The theoretical investigations for the project were conducted by Jena and graduate student Mary Willis at VCU, along with Kandalam. The experimental work was conducted by Ganteför and graduate student Matthias Götz at the University of Konstanz.

The work was supported in part by the federal Defense Threat Reduction Agency and the Department of Energy.

About VCU and the VCU Medical Center: Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls more than 32,000 students in 211 certificate and degree programs in the arts, sciences and humanities. Sixty-nine of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers.

Sathya Achia Abraham | Newswise Science News
Further information:
http://www.vcu.edu

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>