Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop unique method for creating uniform nanoparticles

07.05.2013
University of Illinois researchers have developed a new way to produce highly uniform nanocrystals used for both fundamental and applied nanotechnology projects.
“We have developed a unique approach for the synthesis of highly uniform icosahedral nanoparticles made of platinum (Pt),” explained Hong Yang, a professor of chemical and biomolecular engineering and a faculty affiliate at the Center for Nanoscale Science and Technology at Illinois. “This is important both in fundamental studies—nanoscience and nanotechnology—and in applied sciences such as high performance fuel cell catalysts.

Yang’s research group focuses on the synthesis and understanding structure-property relationship of nanostructured materials for applications in energy, catalysis, and biotechnology. Its paper, "Highly Uniform Platinum Icosahedra Made by the Hot Injection-Assisted GRAILS Method," was published this week in Nano Letters.

“Although polyhedral nanostructures, such as a cube, tetrahedron, octahedron, cuboctahedron, and even icosahedron, have been synthesized for several noble metals, uniform Pt icosahedra do not form readily and are rarely made,” stated Wei Zhou, a visiting scholar with Yang’s research group and the paper’s first author.

An icosahedron crystal is a polyhedron with 20 identical equilateral triangular faces, 30 edges and 12 vertices. According to Yang, icosahedral shaped crystals can improve the catalytic activity in oxygen reduction reaction partly because of the surface strain.
“The key reaction step to improve the activity of oxygen electrode catalysts in the hydrogen fuel cell is to optimize the bond strength between Pt and absorbed oxygen-containing intermediate species,” Yang said. “This allows the rapid production of water and let the intermediate react and leave the surface quickly so the catalyst site can be used again.”

“Unlike many other forms of metal nanoparticles, an icosahedral nanocrystal is not a single crystal, but has many twin (defect) boundaries within this shape. Previous simulation data suggest that it is unstable for Pt nanoparticles to exist in this shape at about >1-2 nm and, indeed, it is uncommon for Pt nanoparticles to have this morphology.”
Highly uniform Pt icosahedral nanocrystals with an edge length of 8.8 nm were synthesized by Yang’s research group.They were made from platinum acetylacetonate in dodecylamine and with small amount of oleic acid using a hot injection-assisted GRAILS (gas reducing agent in liquid solution) approach. In the GRAILS approach, the inclusion of CO gas greatly facilitates the formation of well-defined shapes.

“Our results showed that the key factors for the shape control include fast nucleation, kinetically controlled growth, and protection from oxidation by air,” Zhou added. By adjusting these key parameters, Pt hyper-branched rods, cubes, and octapods were also obtained.

“We are currently studying why this shape is formed in our systems and how we can use this principle to produce other unusual and potentially useful Pt and its alloy nanoparticles,” Yang noted. “The high purity (>95%) of the products provides the ideal model materials for studying the structure/morphology-property relationships. Such mechanistic understanding is valuable for the design of advanced, high performance metal and metal alloy catalysts.”

This work was supported by the National Science Foundation.

Contact: Hong Yang, Department of Chemical and Biomolecular Engineering, 217/244-6730.

Writer: Rick Kubetz, Engineering Communications Office, University of Illinois at Urbana-Champaign, 217/244-7716.

Hong Yang | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>