Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop New System to Study Trigger of Cell Death in Nervous System

05.04.2013
Researchers at the University of Arkansas have developed a new model system to study a receptor protein that controls cell death in both humans and fruit flies, a discovery that could lead to a better understanding of neurodegenerative diseases such as Alzheimer’s and Parkinson’s.

Michael Lehmann, an associate professor of biological sciences, uses fruit fly genetics to study the receptor — N-methyl-D-aspartate receptor, known as the NMDA receptor — that triggers programmed cell death in the human nervous system.

With an aging population, neurodegenerative diseases have become a major public health concern, Lehmann said.

“Whenever brain cells die as a result of neurodegenerative disease, or as a consequence of injuries caused by stroke, exposure to alcohol or neurotoxins, this receptor is involved,” he said. “So it’s very important to understand how it functions and how it may be possible to influence it.”

When larvae of Drosophila melanogaster, a common fruit fly, grow from the larval stage into adults, they shed most of their former organs and grow new ones. About 1 ½ years ago, researchers in Lehmann’s laboratory discovered that the NMDA receptor is required for cell death in the system that they had used for several years to study basic mechanisms of programmed cell death in fruit flies.

“Our model system for studying programmed cell death is the salivary glands in the fly larvae, which are comparatively large organs that completely disappear during metamorphosis,” he said. “Disposal of this tissue by programmed cell death provides us with a very nice system to study the genes that are required for the process. We can use it to identify genes that are required for programmed cell death in humans, as well.”

The National Institutes of Health has awarded Lehmann a three-year, $260,530 grant to support the study.

Brandy Ree, a doctoral student in the interdisciplinary graduate program in cell and molecular biology, worked with Lehmann to use a combination of biochemistry and fruit fly genetics in an attempt to define the pathway that leads from activation of the receptor to the cell’s eventual death.

“We developed a new system to study the receptor outside the nervous system in a normal developmental context,” Lehmann said. “Many of the different components involved in cell death are known in this system. There are more than 30,000 publications about this receptor, but there is still very little known about how the receptor causes cell death. We just have to connect the dots and fit the receptor into the pathway to find out how exactly it contributes to the cell’s death.”

A mid-career investigator in the Center for Protein Structure and Function at the University of Arkansas, Lehmann has studied programmed cell death in Drosophila melanogaster for more than a decade.

In 2007, Lehmann’s research group discovered an important mechanism that regulates the destruction of larval fruit fly salivary glands that could point the way to understanding programmed cell death in the human immune system. They published their findings in the Journal of Cell Biology.

Michael Lehmann, associate professor, biological sciences
J. William Fulbright College of Arts and Sciences
479-575-3688, mlehmann@uark.edu

Michael Lehmann | Newswise
Further information:
http://www.uark.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>