Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop New System to Study Trigger of Cell Death in Nervous System

05.04.2013
Researchers at the University of Arkansas have developed a new model system to study a receptor protein that controls cell death in both humans and fruit flies, a discovery that could lead to a better understanding of neurodegenerative diseases such as Alzheimer’s and Parkinson’s.

Michael Lehmann, an associate professor of biological sciences, uses fruit fly genetics to study the receptor — N-methyl-D-aspartate receptor, known as the NMDA receptor — that triggers programmed cell death in the human nervous system.

With an aging population, neurodegenerative diseases have become a major public health concern, Lehmann said.

“Whenever brain cells die as a result of neurodegenerative disease, or as a consequence of injuries caused by stroke, exposure to alcohol or neurotoxins, this receptor is involved,” he said. “So it’s very important to understand how it functions and how it may be possible to influence it.”

When larvae of Drosophila melanogaster, a common fruit fly, grow from the larval stage into adults, they shed most of their former organs and grow new ones. About 1 ½ years ago, researchers in Lehmann’s laboratory discovered that the NMDA receptor is required for cell death in the system that they had used for several years to study basic mechanisms of programmed cell death in fruit flies.

“Our model system for studying programmed cell death is the salivary glands in the fly larvae, which are comparatively large organs that completely disappear during metamorphosis,” he said. “Disposal of this tissue by programmed cell death provides us with a very nice system to study the genes that are required for the process. We can use it to identify genes that are required for programmed cell death in humans, as well.”

The National Institutes of Health has awarded Lehmann a three-year, $260,530 grant to support the study.

Brandy Ree, a doctoral student in the interdisciplinary graduate program in cell and molecular biology, worked with Lehmann to use a combination of biochemistry and fruit fly genetics in an attempt to define the pathway that leads from activation of the receptor to the cell’s eventual death.

“We developed a new system to study the receptor outside the nervous system in a normal developmental context,” Lehmann said. “Many of the different components involved in cell death are known in this system. There are more than 30,000 publications about this receptor, but there is still very little known about how the receptor causes cell death. We just have to connect the dots and fit the receptor into the pathway to find out how exactly it contributes to the cell’s death.”

A mid-career investigator in the Center for Protein Structure and Function at the University of Arkansas, Lehmann has studied programmed cell death in Drosophila melanogaster for more than a decade.

In 2007, Lehmann’s research group discovered an important mechanism that regulates the destruction of larval fruit fly salivary glands that could point the way to understanding programmed cell death in the human immune system. They published their findings in the Journal of Cell Biology.

Michael Lehmann, associate professor, biological sciences
J. William Fulbright College of Arts and Sciences
479-575-3688, mlehmann@uark.edu

Michael Lehmann | Newswise
Further information:
http://www.uark.edu

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>