Researchers develop software tool for cancer genomics

Xing Hua, Ph.D., postdoctoral fellow in biostatistics at the National Cancer Institute, and a former visiting scholar at MCW, is the first author of the paper. Yan Lu, Ph.D., assistant professor of physiology, is corresponding author; and Pengyuan Liu, Ph.D., associate professor of physiology at MCW, is the co-corresponding author.

Cancers are caused by the accumulation of genomic alterations, or mutations. Genomic sequencing identifies two specific types of mutations: driver mutations, which are responsible for cancer, and passenger mutations, which are irrelevant to tumor development. A major challenge in cancer genome sequencing is discriminating between the two types of mutations.

The authors incorporated statistical methods and bioinformatics tools into the computational tool DrGaP, which stands for “Driver Genes and Pathways.”

“DrGaP is immediately applicable to cancer genome sequencing studies and will lead a more complete identification of altered driver genes and driver signaling pathways in cancer,” said Dr. Liu. “Biological knowledge of the mutation process is fully integrated into the models, and provides several significant improvements and increased power over current methods.”

The researchers note that DrGaP not only recaptured a large majority of driver genes previously reported in other studies, but also identified much longer list of additional candidate genes whose mutations may be linked to cancer. This data demonstrates the extreme complexity of tumor cells and has important implications in targeted cancer therapy.

Other authors of the paper include Haiming Xu, Ph.D., MCW; Yaning Yang, Ph.D., University of Science and Technology of China; and Jun Zhu, Ph.D., Institute of Bioinformatics, Zheijiang University in Zhejiang, China.

Media Contact

Maureen Mack EurekAlert!

More Information:

http://www.mcw.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors