Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop Rapid Test Strips for Bacterial Contamination in Swimming Water

02.05.2012
Urban beach closures due to coliform outbreaks have become disturbing signs of summer, yet water-testing technology has never been fast enough to keep up with changing conditions, nor accessible enough to check all waters.

Now, researchers at McMaster University have developed a rapid testing method using a simple paper strip that can detect E. coli in recreational water within minutes. The new tool can close the gap between outbreak and detection, improving public safety.

Scientists from the Sentinel Bioactive Paper Network have created and validated the viability of the test strip, which can detect potentially harmful concentrations of E. coli in water quickly and simply, with much greater accuracy than existing portable technology.

The work is described in a paper published online in the journal Analytical and Bioanalytical Chemistry.

“Coliforms are always a big problem,” says the paper’s lead author John Brennan, a McMaster chemistry professor who holds the Canada Research Chair in Bioanalytical Chemistry. “The methods used to detect outbreaks are slow, and tend not to be portable, as they often need a lab-based amplification step prior to testing, causing a time lag between an outbreak and a beach closure.”

The Natural Sciences and Engineering Research Council of Canada funds Sentinel, a strategic research network that spans the country and is based at McMaster. Several dozen researchers are involved in its initiatives.

Bioactive paper is both old and new, Brennan explains. Since the late1950s, physicians have been using bioactive paper to test for glucose in urine. In the last several years, the area has expanded quickly and research has become very competitive as scientists work on new applications.

“It’s always a race,” Brennan says.

The new strips are coated with chemicals that react to the bacteria, and are printed using inkjet technology similar to that found in standard desktop printers. Within 30 minutes of sampling, the paper changes colour to indicate the presence of E. coli, with colours coded to represent different forms and concentrations of the bacteria.

In the future, the test should make it possible for consumers to check their water affordably and easily, without additional equipment, scientific knowledge or long waits.

“One of the problems right now is that there is no simple, fast and cheap way to test recreational water, and certainly nothing out there in the realm of rapid tests for drinking water,” Brennan says.

Field testing of the prototype strips is planned or under way in Canada and across the globe, in regions where untreated water poses particular health hazards. The results of these studies will help to refine the test strips and may lead to strips that are sensitive enough to tell whether water is safe enough to drink, says Brennan.

The standards for safe drinking water are hundreds of times tighter than those for safe swimming water. Typically, limits for safe swimming allow for a maximum of 100 to 500 cells in 100 mL of water, depending on jurisdiction. For water to be considered safe for drinking, there cannot be even one cell in 100 mL – a little less than half a cup of water.

The next stage of pre-commercial development of the test strips is already funded by NSERC through a Phase I Idea to Innovation grant. Commercialization of a final product could take as little as two to three years.

LINKS:
The research paper is here: http://bit.ly/IhS3jX
A video with John Brennan explaining the research is here: http://bit.ly/IEZQq7
A photo of John Brennan is here: http://bit.ly/IwIavX
A photo of the test strip is here: http://bit.ly/JfT9Gx
For more information, please contact:
Wade Hemsworth
Public Relations Manager
McMaster University
905-525-9140, ext. 27988
hemswor@mcmaster.ca
Michelle Donovan
Public Relations Manager
McMaster University
905-525-9140 ext. 22869
donovam@mcmaster.ca

Wade Hemsworth | Newswise Science News
Further information:
http://www.mcmaster.ca

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>