Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop oral delivery system to treat inflammatory bowel diseases

11.10.2010
Researchers at the Georgia Institute of Technology and Emory University have developed a novel approach for delivering small bits of genetic material into the body to improve the treatment of inflammatory bowel diseases. Delivering short strands of RNA into cells has become a popular research area because of its potential therapeutic applications, but how to deliver them into targeted cells in a living organism has been an obstacle.

In the Oct. 10 advance online edition of the journal Nature Materials, researchers describe how they encapsulated short pieces of RNA into engineered particles called thioketal nanoparticles and orally delivered the genetic material directly to the inflamed intestines of animals. The research was sponsored by the National Science Foundation and National Institutes of Health.

"The thioketal nanoparticles we designed are stable in both acids and bases and only break open to release the pieces of RNA in the presence of reactive oxygen species, which are found in and around inflamed tissue in the gastrointestinal tract of individuals with inflammatory bowel diseases," said Niren Murthy, an associate professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

This work was done in collaboration with Emory University Division of Digestive Diseases professor Shanthi Sitaraman, associate professor Didier Merlin and postdoctoral fellow Guillaume Dalmasso.

The thioketal nanoparticles protect the small interfering RNAs (siRNAs) from the harsh environment of the gastrointestinal tract and target them directly to the inflamed intestinal tissues. This localized approach is necessary because siRNAs can cause major side-effects if injected systemically.

In the paper, the thioketal nanoparticles were formulated from a new polymer -- poly-(1,4-phenyleneacetone dimethylene thioketal) (PPADT) -- and engineered to have a diameter of approximately 600 nanometers for optimal oral delivery.

For their experiments, the researchers used a mouse model of ulcerative colitis -- a debilitating inflammatory bowel disease in which the digestive tract becomes inflamed, causing severe diarrhea and abdominal pain that can lead to life-threatening complications.

The researchers orally administered thioketal nanoparticles loaded with siRNA that inhibits an inflammation-promoting cytokine called tumor necrosis factor - alpha (TNF-á). The nanoparticles traveled directly to the mouse colons where reactive oxygen species were being produced in excess and decreased the cytokine production levels there.

Tissue samples from the colons treated with siRNA delivered by these thioketal nanoparticles exhibited intact epitheliums, well-defined fingerlike "crypt" structures and lower levels of inflammation -- signs that the colon was protected against ulcerative colitis.

"Since ulcerative colitis is restricted to the colon, these results confirm that the siRNA-loaded thioketal nanoparticles remain stable in non-inflamed regions of the gastrointestinal tract while targeting siRNA to inflamed intestinal tissues," explained the paper's lead author Scott Wilson, a graduate student in the Georgia Tech School of Chemical & Biomolecular Engineering.

The paper showed that thioketal nanoparticles have the chemical and physical properties needed to overcome the obstacles of gastrointestinal fluids, intestinal mucosa and cellular barriers to provide therapy to inflamed intestinal tissues, he added.

The researchers are currently working on increasing the degradation rate of the nanoparticles and enhancing their reactivity with reactive oxygen species. The team also plans to conduct a biodistribution study to detail how the nanoparticles travel through the body.

"Polymer toxicity is something we'll have to investigate further, but during this study we discovered that thioketal nanoparticles loaded with siRNA have a cell toxicity profile similar to nanoparticles formulated from the FDA-approved material poly(lactic-co-glycolic acid) (PLGA)," added Murthy.

In the future, thioketal nanoparticles may become a significant player in the treatment of numerous gastrointestinal diseases linked to intestinal inflammation, including gastrointestinal cancers, inflammatory bowel diseases and viral infections, according to Murthy.

This project is supported by the National Science Foundation (NSF) (Award Nos. EEC-9731643 and NSF Career BES-0546962) and the National Institutes of Health (NIH) (Award Nos. UO1 HL80711-01, R21 EB006418, RO1 HL096796-01, RO1 DK071594, R01 DK064711 and T32 GM08433). The content is solely the responsibility of the principal investigator and does not necessarily represent the official views of the NSF or NIH.

Abby Vogel Robinson | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>