Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop oral delivery system to treat inflammatory bowel diseases

11.10.2010
Researchers at the Georgia Institute of Technology and Emory University have developed a novel approach for delivering small bits of genetic material into the body to improve the treatment of inflammatory bowel diseases. Delivering short strands of RNA into cells has become a popular research area because of its potential therapeutic applications, but how to deliver them into targeted cells in a living organism has been an obstacle.

In the Oct. 10 advance online edition of the journal Nature Materials, researchers describe how they encapsulated short pieces of RNA into engineered particles called thioketal nanoparticles and orally delivered the genetic material directly to the inflamed intestines of animals. The research was sponsored by the National Science Foundation and National Institutes of Health.

"The thioketal nanoparticles we designed are stable in both acids and bases and only break open to release the pieces of RNA in the presence of reactive oxygen species, which are found in and around inflamed tissue in the gastrointestinal tract of individuals with inflammatory bowel diseases," said Niren Murthy, an associate professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

This work was done in collaboration with Emory University Division of Digestive Diseases professor Shanthi Sitaraman, associate professor Didier Merlin and postdoctoral fellow Guillaume Dalmasso.

The thioketal nanoparticles protect the small interfering RNAs (siRNAs) from the harsh environment of the gastrointestinal tract and target them directly to the inflamed intestinal tissues. This localized approach is necessary because siRNAs can cause major side-effects if injected systemically.

In the paper, the thioketal nanoparticles were formulated from a new polymer -- poly-(1,4-phenyleneacetone dimethylene thioketal) (PPADT) -- and engineered to have a diameter of approximately 600 nanometers for optimal oral delivery.

For their experiments, the researchers used a mouse model of ulcerative colitis -- a debilitating inflammatory bowel disease in which the digestive tract becomes inflamed, causing severe diarrhea and abdominal pain that can lead to life-threatening complications.

The researchers orally administered thioketal nanoparticles loaded with siRNA that inhibits an inflammation-promoting cytokine called tumor necrosis factor - alpha (TNF-á). The nanoparticles traveled directly to the mouse colons where reactive oxygen species were being produced in excess and decreased the cytokine production levels there.

Tissue samples from the colons treated with siRNA delivered by these thioketal nanoparticles exhibited intact epitheliums, well-defined fingerlike "crypt" structures and lower levels of inflammation -- signs that the colon was protected against ulcerative colitis.

"Since ulcerative colitis is restricted to the colon, these results confirm that the siRNA-loaded thioketal nanoparticles remain stable in non-inflamed regions of the gastrointestinal tract while targeting siRNA to inflamed intestinal tissues," explained the paper's lead author Scott Wilson, a graduate student in the Georgia Tech School of Chemical & Biomolecular Engineering.

The paper showed that thioketal nanoparticles have the chemical and physical properties needed to overcome the obstacles of gastrointestinal fluids, intestinal mucosa and cellular barriers to provide therapy to inflamed intestinal tissues, he added.

The researchers are currently working on increasing the degradation rate of the nanoparticles and enhancing their reactivity with reactive oxygen species. The team also plans to conduct a biodistribution study to detail how the nanoparticles travel through the body.

"Polymer toxicity is something we'll have to investigate further, but during this study we discovered that thioketal nanoparticles loaded with siRNA have a cell toxicity profile similar to nanoparticles formulated from the FDA-approved material poly(lactic-co-glycolic acid) (PLGA)," added Murthy.

In the future, thioketal nanoparticles may become a significant player in the treatment of numerous gastrointestinal diseases linked to intestinal inflammation, including gastrointestinal cancers, inflammatory bowel diseases and viral infections, according to Murthy.

This project is supported by the National Science Foundation (NSF) (Award Nos. EEC-9731643 and NSF Career BES-0546962) and the National Institutes of Health (NIH) (Award Nos. UO1 HL80711-01, R21 EB006418, RO1 HL096796-01, RO1 DK071594, R01 DK064711 and T32 GM08433). The content is solely the responsibility of the principal investigator and does not necessarily represent the official views of the NSF or NIH.

Abby Vogel Robinson | EurekAlert!
Further information:
http://www.gatech.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>