Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop model of 'near-optimal' genetic code

29.08.2013
Researchers have created a model that may explain the complexities of the origins of life. Their work, which appears in the Journal of the Royal Society Interface, offers new insights into how RNA signaling likely developed into the modern "genetic code."

"Our model shows that today's genetic code probably resulted from a combination of selective forces and random chance," explained Justin Jee, a doctoral student at NYU School of Medicine and the paper's lead author.

The study's other co-authors included: Bud Mishra, who has appointments at NYU's Courant Institute of Mathematical Sciences and the Sackler Institute of Graduate Biomedical Sciences at NYU School of Medicine; Andrew Sundstrom of the Courant Institute; and Steven Massey, an assistant professor in the University of Puerto Rico's Department of Biology.

The researchers sought to account for the composition of the genetic code, which allows proteins to be built from amino acids with high specificity based on information stored in a RNA or DNA genome. This translation process between the nucleic acids and amino acids is remarkably and mysteriously universal; the same code is shared in all organisms from bacteria to human beings. At the same time, the genetic code is nearly, but not completely, optimal in terms of how "good" it is at specifying particular amino acids for particular nucleic acid sequences.

Since the code's discovery in the 1960's, researchers have wondered: how is it that a near-optimal code became so universal?

To address this question, the researchers created a model of genetic code evolution in which multiple "translating" RNAs and "genomic" RNAs competed for survival. Specifically, the translating RNAs were able to link amino acids together based on information stored in genomic RNA, but with varying levels of specificity.

In running computer simulations of RNA interactions, they could see two phenomena. First, it was necessary for the translating and genomic RNAs to organize into cells, which aided the coordination of a code between the translating and genomic RNAs. Second, selective forces led a single set of translating RNAs to dominate the population. In other words, the emergence of a single, universal, near-optimal code was a natural outcome of the model. Even more remarkably, the results occurred under realistic conditions—specifically, they held under parameters such as protein lengths and rates of mutation that likely existed in a natural RNA world.

"The most elegant ideas in this paper are rather obvious consequences of a well-studied model based on sender-receiver games," noted Mishra, the paper's senior author. "Yet the results are still very surprising because they suggest, for example, that proteins, the most prized molecules of biology, might have had their origin as undesirable toxic trash. Other studies based on phylogenomic analysis seem to be coming to similar conclusions independently."

This research was funded by National Science Foundation grants CCF-0836649 and CCF-0926166 as well as by a National Defense Science and Engineering Graduate Fellowship from the U.S. Department of Defense.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

Further reports about: Biomedical Science Medicine NYU RNA amino acid computer simulation genetic code

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>