Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Develop Method to Map Cell Receptor that Regulates Stress

Drug developers have long been looking for agents that will target a cell receptor that regulates stress in humans, but no small molecule drugs have successfully gone through clinical studies. Now, a team at the Salk Institute has demonstrated how a novel tool can be used to map the binding sites on this receptor, which they say could speed the design of effective therapies.

In the July 12th online international issue of Angewandte Chemie, the researchers published a method demonstrating how unnatural amino acids (Uaas) can be used to map the structure of a corticotropin-releasing hormone receptor (CRF-R1). They also show how this new tool helped locate three areas on the receptor to which peptide hormones can dock to activate or inhibit the receptor. Many other so-called natural ligand binding sites are predicted to exist on the receptor.

"As important as this receptor is to regulating human stress, no one knows how it is exactly arranged in the cell membrane, which is key to understanding how it functions and how it can be manipulated in drug therapy," says the study's first author, Dr. Irene Coin, Ph.D. "We have created a method that provides new insights into how peptides interact with this receptor."

Not only is this method useful to understanding the specific function of CRF-R1, it can be adapted to map the interaction of other G-protein-coupled receptors (GPCRs), a large family of proteins of which CRF-R1 is a member, says the study's senior author, Dr. Lei Wang, assistant professor and Frederick B. Rentschler Developmental Chair in the Chemical Biology and Proteomics Laboratory.

"There are hundreds of GPCRs in the human body, and they are the molecular target of more than 30% of today's pharmaceuticals," says Wang. "This technology has enormous potential for addressing fundamental biological questions regarding the many different classes of GPCRs, and for guiding the design of exquisitely specific agents where they are needed."

The study evolved from several fundamental Salk discoveries. The first is the 1981 discovery and cloning of the CRF receptor by Salk researcher Dr. Wylie Vale, who is a co-author on this study. The receptor binds on to the coricotropin-releasing hormone, which mediates endocrine, autonomic, behavioral, and immune responses to stress.

The second innovation is the development of Uaas technology by Wang and his colleagues. It was first used in bacteria in 2001 and then in mammalian cells in 2007. This study is the first to report its application in comparing the behavior of different ligands at the receptor in live mammalian cells.

Coin, who was trained in Germany, joined Wang's laboratory as a postdoctoral fellow to lead the study. "This is one of the few labs in the world that can do this kind of research on mammalian cells," she says. "And in Vale's lab there is unbeatable expertise in the biological testing of the mutant receptors."

The tool the researchers use consists of three different molecules, all of which are synthetically engineered. One is a synthetic transfer RNA (tRNA) that cells use to incorporate amino acids into a protein that is being built inside a cell. The second molecule is an enzymatic synthetase that can recognize the engineered tRNA, and load it with the third engineered molecule - an unnatural amino acid. These amino acids are chemically distinct from the 20 amino acids that naturally exist in the body; they can be engineered for different desirable properties, such as to fluoresce or to chemically react upon exposure to light.

Because the researchers know the amino acid sequences of the CRF-R1, they modified the DNA at specific sites that they believed might be near ligand binding sites. The engineered tRNA and synthetase worked together to implant an unnatural amino acid at these sites. "We can control the positions that this unnatural amino acid end up in, and we put them where we think there might be a binding site, based on some clues from other data," says Coin. After adding radiolabeled natural ligands to cells expressing the receptor, the researchers then shine light, which triggers the unnatural amino acid to capture the ligand if the latter is close by. "We can now tell if the ligand binds close to a particular site of the receptor or not," she says.

In this way, different mutants displaying an unnatural amino acid in a different structural position on the receptor can be engineered. "This is a way to map the surface of the receptor to see which positions are close to ligands," Coin says.

Different ligands may bind in different places on the receptor, so the technology can be used to eventually build a complete map of all the ligand-specific binding sites on the receptor, Wang says. With that knowledge, drugs can eventually be shaped that specifically adhere to the targeted binding pocket, he says.

The researchers screened 12 different positions on the receptor, and found three natural ligand binding sites. "We published the methodology and provided the first preliminary map of binding sites," Coin says. "Different ligands indeed show different binding patterns."

Dr. Marilyn Perrin, a staff scientist at Salk's Clayton Foundation Laboratories for Peptide Biology, also contributed to the research.

The study was funded by a postdoctoral fellowship provided to Coin from the Deutsche Forschungsgemeinschaft, and grants from the National Institute of Diabetes and Digestive and Kidney Disease, the Clayton Medical Research Foundation, the California Institute for Regenerative Medicine, and the National Institutes of Health.

Andy Hoang | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>