Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Develop Drug-Like Molecules to Improve Schizophrenia Treatment

Researchers at Vanderbilt University have identified chemical compounds that could lead to a major advance in the treatment of schizophrenia.

In a transaction announced this week, Vanderbilt has licensed the compounds to Karuna Pharmaceuticals in Boston, Mass., for further development leading to human testing.

All current anti-psychotic medications act by binding to serotonin and dopamine receptors in the brain to help control hallucinations and delusions, but they provide little relief of other serious symptoms, including social withdrawal and the inability to pay attention or make decisions. As a result, many patients have difficulty holding a job or living independently. In addition, current drugs have serious side effects.

The new Vanderbilt compounds work in a fundamentally different way than existing medications, by inhibiting glycine transporter one (GlyT1), an action that allows for more normal function of brain cells involved in schizophrenia.

“The potential of these new compounds to ameliorate the devastating social and cognitive deficits of schizophrenia, which do not respond to currently available medications, is very exciting,” said National Institute of Mental Health (NIMH) Director Thomas R. Insel, M.D.

The novel compounds were developed by Jeffrey Conn, Ph.D., and Craig Lindsley, Ph.D., co-directors of the Vanderbilt Center for Neuroscience Drug Discovery (VCNDD), and their colleagues in the VCNDD, part of Vanderbilt University Medical Center.

“We are delighted to have the opportunity to partner with VCNDD to help these drugs realize their full potential, to bring a valuable new treatment to patients and families suffering with this disabling disease,” commented Karuna CEO Edmund Harrigan, Ph.D., former executive vice president of Worldwide Business Development at Pfizer.

Schizophrenia is a chronic disabling mental illness that affects more than 3 million Americans according to the NIMH, and 24 million people worldwide, according to the World Health Organization. The worldwide market for antipsychotic drugs exceeds $20 billion a year.

The Vanderbilt GlyT1 inhibitors were discovered and developed with support from the NIMH, which in 2010 awarded Vanderbilt a five-year, $10 million grant to establish a National Cooperative Drug Discovery and Development Group, targeting new schizophrenia therapies.

The work is now sufficiently far enough along to hand off to Karuna Pharmaceuticals, a Boston- based company focused on developing breakthrough therapies for schizophrenia.

Conn and Lindsley’s colleagues in the Vanderbilt Center For Neuroscience Drug Discovery on the schizophrenia program include Carrie Jones, Ph.D., the center’s director of in vivo pharmacology; Colleen Niswender, Ph.D., director of molecular pharmacology; and J. Scott Daniels, Ph.D., director of drug metabolism and pharmacokinetics.

It can cost over a billion dollars to bring a drug to market. Cuts in health care reimbursement for medications could make it even more difficult for pharmaceutical companies to recoup that investment. Some firms already are downsizing their research operations as patent protection ends for some of their best-selling brand name products.

That’s where academic medical centers can help. Vanderbilt is uniquely positioned to undertake early stage drug discovery, in part because of its strength in clinical pharmacology, its investment in research infrastructure including high-throughput screening, its ability to attract government, foundation and corporate support and its recruitment of top-notch scientists.

“This work shows how publicly funded basic research can foster the identification of novel medication targets and promising candidate compounds that industry can then take forward,” Insel said. “It is a wonderful example of translational research with the potential to change lives.”

Bill Snyder | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>