Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop Drug-Like Molecules to Improve Schizophrenia Treatment

23.09.2011
Researchers at Vanderbilt University have identified chemical compounds that could lead to a major advance in the treatment of schizophrenia.

In a transaction announced this week, Vanderbilt has licensed the compounds to Karuna Pharmaceuticals in Boston, Mass., for further development leading to human testing.

All current anti-psychotic medications act by binding to serotonin and dopamine receptors in the brain to help control hallucinations and delusions, but they provide little relief of other serious symptoms, including social withdrawal and the inability to pay attention or make decisions. As a result, many patients have difficulty holding a job or living independently. In addition, current drugs have serious side effects.

The new Vanderbilt compounds work in a fundamentally different way than existing medications, by inhibiting glycine transporter one (GlyT1), an action that allows for more normal function of brain cells involved in schizophrenia.

“The potential of these new compounds to ameliorate the devastating social and cognitive deficits of schizophrenia, which do not respond to currently available medications, is very exciting,” said National Institute of Mental Health (NIMH) Director Thomas R. Insel, M.D.

The novel compounds were developed by Jeffrey Conn, Ph.D., and Craig Lindsley, Ph.D., co-directors of the Vanderbilt Center for Neuroscience Drug Discovery (VCNDD), and their colleagues in the VCNDD, part of Vanderbilt University Medical Center.

“We are delighted to have the opportunity to partner with VCNDD to help these drugs realize their full potential, to bring a valuable new treatment to patients and families suffering with this disabling disease,” commented Karuna CEO Edmund Harrigan, Ph.D., former executive vice president of Worldwide Business Development at Pfizer.

Schizophrenia is a chronic disabling mental illness that affects more than 3 million Americans according to the NIMH, and 24 million people worldwide, according to the World Health Organization. The worldwide market for antipsychotic drugs exceeds $20 billion a year.

The Vanderbilt GlyT1 inhibitors were discovered and developed with support from the NIMH, which in 2010 awarded Vanderbilt a five-year, $10 million grant to establish a National Cooperative Drug Discovery and Development Group, targeting new schizophrenia therapies.

The work is now sufficiently far enough along to hand off to Karuna Pharmaceuticals, a Boston- based company focused on developing breakthrough therapies for schizophrenia.

Conn and Lindsley’s colleagues in the Vanderbilt Center For Neuroscience Drug Discovery on the schizophrenia program include Carrie Jones, Ph.D., the center’s director of in vivo pharmacology; Colleen Niswender, Ph.D., director of molecular pharmacology; and J. Scott Daniels, Ph.D., director of drug metabolism and pharmacokinetics.

It can cost over a billion dollars to bring a drug to market. Cuts in health care reimbursement for medications could make it even more difficult for pharmaceutical companies to recoup that investment. Some firms already are downsizing their research operations as patent protection ends for some of their best-selling brand name products.

That’s where academic medical centers can help. Vanderbilt is uniquely positioned to undertake early stage drug discovery, in part because of its strength in clinical pharmacology, its investment in research infrastructure including high-throughput screening, its ability to attract government, foundation and corporate support and its recruitment of top-notch scientists.

“This work shows how publicly funded basic research can foster the identification of novel medication targets and promising candidate compounds that industry can then take forward,” Insel said. “It is a wonderful example of translational research with the potential to change lives.”

Bill Snyder | Newswise Science News
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>