Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop drug delivery system using nanoparticles triggered by electromagnetic field

09.07.2010
A new system for the controlled delivery of pharmaceutical drugs has been developed by a team of University of Rhode Island chemical engineers using nanoparticles embedded in a liposome that can be triggered by non-invasive electromagnetic fields.

The discovery by URI professors Geoffrey Bothun and Arijit Bose and graduate student Yanjing Chen was published in the June issue of ACS Nano.

According to Bothun, liposomes are tiny nanoscale spherical structures made of lipids that can trap different drug molecules inside them for use in delivering those drugs to targeted locations in the body. The superparamagnetic iron oxide nanoparticles the researchers embed in the shell of the liposome release the drug by making the shell leaky when heat-activated in an alternating current electromagnetic field operating at radio frequencies.

"We've shown that we can control the rate and extent of the release of a model drug molecule by varying the nanoparticle loading and the magnetic field strength," explained Bothun. "We get a quick release of the drug with magnetic field heating in a matter of 30 to 40 minutes, and without heating there is minimal spontaneous leakage of the drug from the liposome."

Bothun said that the liposomes self-assemble because portions of the lipids are hydrophilic – they have a strong affinity for water – and others are hydrophobic – they avoid water. When he mixes lipids and nanoparticles in a solvent, adds water and evaporates off the solvent, the materials automatically assemble themselves into liposomes. The hydrophobic nanoparticles and lipids join together to form the shell of the liposome, while the water-loving drug molecules are captured inside the spherical shell.

"The concept of loading nanoparticles within the hydrophobic shell to focus the activation is brand new," Bothun said. "It works because the leakiness of the shell is ultimately what controls the release of the drugs."

The next step in the research is to design and optimize liposome/nanoparticle assemblies that can target cancer cells or other disease-causing cells. In vitro cancer cell studies are already underway in collaboration with URI pharmacy professor Matthew Stoner.

"We are functionalizing the liposomes by putting in different lipids to help stabilize and target them so they can seek out particular cancer cell types," he said. "We are building liposomes that will attach to particular cells or tumor regions."

Bothun said that research on nanomedicine shows great promise, but there are still many challenges to overcome, and the targeting of appropriate cells may be the greatest challenge.

"Any ability to target the drug is better than a drug that goes everywhere in your system and generates off-target effects," he said, noting that the hair loss and nausea from anti-cancer drugs are the result of the high drug concentrations needed for treatment and the drug's affect on non-target cells. "If you can get an assembly to a targeted site without losing its contents in the process, that's the holy grail."

Shane Donaldson | EurekAlert!
Further information:
http://www.uri.edu

Further reports about: anti-cancer drug cancer drug cell type drug molecule magnetic field

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>