Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop computer-aided models to replace animal testing

02.10.2013
Every year, October 4 is all about the protection of animals. On World Animal Day, animal welfare organisations around the globe advocate the respectful treatment and welfare of animals.

One of the central demands of the animal activists is to abolish animal testing and to use alternative testing methods instead. In this context, the European Union has taken a huge step forward at the beginning of this year: On March 11 a full ban on the marketing of cosmetics and hygiene products tested on animals entered into force in the EU.

The search for alternative testing methods for safety assessment is thus more pressing than ever. The development of such non-animal testing methods, especially when it comes to reliably predicting long-term toxic effects, represents a major scientific challenge. The NOTOX project, which is co-funded by the European Commission and Cosmetics Europe, the European trade association of the cosmetics industry, significantly contributes to this endeavor by developing and validating predictive bioinformatics models characterizing long-term toxicity responses. “These computer-aided models will help predict possible long-term toxic effects on the human body”, explains Elmar Heinzle, Professor of Applied Biochemistry and Biochemical Engineering at Saarland University, who coordinates the NOTOX project. In consequence, the use of living organisms to test the safety of substances to be found in daily-life products such as make-up, soap or toothpaste is no longer needed.

Computer-aided models as an alternative to animal testing
The liver is the central organ for the elimination of toxic substances in the human body. Therefore NOTOX scientists closely examine in test-tube experiments how such substances affect human liver cells in the long run. The processes and reactions they observe in the cells are being translated into highly complex computer models. The overall goal is to develop algorithms that closely mimic the processes which actually take place in human tissues when exposed to toxic substances. These computational models will allow for reliable long-term predictions and thus help to replace animal testing in the long run.

In order to achieve this ambitious goal, NOTOX brings together eleven internationally renowned and interdisciplinary research teams from all over Europe, including academic research laboratories and four small and medium sized enterprises (SMEs). Apart from Professor Heinzle and his research team, additional partners from Saarland are involved in the project. These include the department of Genetics/Epigenetics at Saarland University, the German Research Centre for Artificial Intelligence (DFKI) as well as the European Research and Project Office GmbH – Eurice, responsible for the management of a large number of European research projects at Saarland University.

NOTOX in motion: Scientists open their labs for camera crew
Over several months a film team captured statements and pictures of NOTOX scientists in various settings and on different occasions: during project meetings and at work in their laboratories. The result is a vivid glance behind the scenes of the project, with exciting insights into the challenges of developing validated alternative testing methods. Moreover, the film shows how cutting-edge research on alternative testing methods contributes to improving the overall welfare of animals.

The NOTOX film is available on the project website: http://www.notox-sb.eu/film

About NOTOX: On the way to alternative testing methods
To advance research in the field of alternative testing methods for long-term systemic toxicity, the Research Initiative SEURAT-1 was established in 2011. It stands for “Safety Evaluation Ultimately Replacing Animal Testing”. This initiative, comprising six research projects as building blocks, pursues a common strategy “towards the replacement of current repeated dose systemic toxicity testing in human safety assessment”. One of the SEURAT-1 research projects is NOTOX, which started in 2011 and will run for five years. The 9 million € project is co-funded by the European Commission and Cosmetics Europe, the European trade association which represents the interests of the cosmetics industry. Project coordinator is Prof. Elmar Heinzle of Saarland University, Department of Biochemical Engineering. The research results achieved by SEURAT-1 projects will not only be relevant for the cosmetics industry, but are expected to also have an impact on the chemical and pharmaceutical industry.

Internet: http://www.notox-sb.eu

Further information on the project, please contact:
Project Coordination:
Prof. Elmar Heinzle
Universität des Saarlandes
Technische Biochemie
Gebäude A 1.5
66123 Saarbrücken
Tel: +49 681 302 2905
e.heinzle@mx.uni-saarland.de
Footage Material
The film as well as cleanfeed and additional footage material is available from the project management partner Eurice on request. Please contact:
Project Management
Dr. Verena Peuser
Eurice – European Research and Project Office GmbH
Science Park 1
66123 Saarbrücken
Tel. +49 681 9592 3396
v.peuser@eurice.eu

Saar - Uni - Presseteam | Universität des Saarlandes
Further information:
http://www.notox-sb.eu
http://www.notox-sb.eu/film
http://www.uni-saarland.de

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>