Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop computer-aided models to replace animal testing

02.10.2013
Every year, October 4 is all about the protection of animals. On World Animal Day, animal welfare organisations around the globe advocate the respectful treatment and welfare of animals.

One of the central demands of the animal activists is to abolish animal testing and to use alternative testing methods instead. In this context, the European Union has taken a huge step forward at the beginning of this year: On March 11 a full ban on the marketing of cosmetics and hygiene products tested on animals entered into force in the EU.

The search for alternative testing methods for safety assessment is thus more pressing than ever. The development of such non-animal testing methods, especially when it comes to reliably predicting long-term toxic effects, represents a major scientific challenge. The NOTOX project, which is co-funded by the European Commission and Cosmetics Europe, the European trade association of the cosmetics industry, significantly contributes to this endeavor by developing and validating predictive bioinformatics models characterizing long-term toxicity responses. “These computer-aided models will help predict possible long-term toxic effects on the human body”, explains Elmar Heinzle, Professor of Applied Biochemistry and Biochemical Engineering at Saarland University, who coordinates the NOTOX project. In consequence, the use of living organisms to test the safety of substances to be found in daily-life products such as make-up, soap or toothpaste is no longer needed.

Computer-aided models as an alternative to animal testing
The liver is the central organ for the elimination of toxic substances in the human body. Therefore NOTOX scientists closely examine in test-tube experiments how such substances affect human liver cells in the long run. The processes and reactions they observe in the cells are being translated into highly complex computer models. The overall goal is to develop algorithms that closely mimic the processes which actually take place in human tissues when exposed to toxic substances. These computational models will allow for reliable long-term predictions and thus help to replace animal testing in the long run.

In order to achieve this ambitious goal, NOTOX brings together eleven internationally renowned and interdisciplinary research teams from all over Europe, including academic research laboratories and four small and medium sized enterprises (SMEs). Apart from Professor Heinzle and his research team, additional partners from Saarland are involved in the project. These include the department of Genetics/Epigenetics at Saarland University, the German Research Centre for Artificial Intelligence (DFKI) as well as the European Research and Project Office GmbH – Eurice, responsible for the management of a large number of European research projects at Saarland University.

NOTOX in motion: Scientists open their labs for camera crew
Over several months a film team captured statements and pictures of NOTOX scientists in various settings and on different occasions: during project meetings and at work in their laboratories. The result is a vivid glance behind the scenes of the project, with exciting insights into the challenges of developing validated alternative testing methods. Moreover, the film shows how cutting-edge research on alternative testing methods contributes to improving the overall welfare of animals.

The NOTOX film is available on the project website: http://www.notox-sb.eu/film

About NOTOX: On the way to alternative testing methods
To advance research in the field of alternative testing methods for long-term systemic toxicity, the Research Initiative SEURAT-1 was established in 2011. It stands for “Safety Evaluation Ultimately Replacing Animal Testing”. This initiative, comprising six research projects as building blocks, pursues a common strategy “towards the replacement of current repeated dose systemic toxicity testing in human safety assessment”. One of the SEURAT-1 research projects is NOTOX, which started in 2011 and will run for five years. The 9 million € project is co-funded by the European Commission and Cosmetics Europe, the European trade association which represents the interests of the cosmetics industry. Project coordinator is Prof. Elmar Heinzle of Saarland University, Department of Biochemical Engineering. The research results achieved by SEURAT-1 projects will not only be relevant for the cosmetics industry, but are expected to also have an impact on the chemical and pharmaceutical industry.

Internet: http://www.notox-sb.eu

Further information on the project, please contact:
Project Coordination:
Prof. Elmar Heinzle
Universität des Saarlandes
Technische Biochemie
Gebäude A 1.5
66123 Saarbrücken
Tel: +49 681 302 2905
e.heinzle@mx.uni-saarland.de
Footage Material
The film as well as cleanfeed and additional footage material is available from the project management partner Eurice on request. Please contact:
Project Management
Dr. Verena Peuser
Eurice – European Research and Project Office GmbH
Science Park 1
66123 Saarbrücken
Tel. +49 681 9592 3396
v.peuser@eurice.eu

Saar - Uni - Presseteam | Universität des Saarlandes
Further information:
http://www.notox-sb.eu
http://www.notox-sb.eu/film
http://www.uni-saarland.de

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>