Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop a new technique to date forensic death based on corpse microorganisms

16.03.2009
A group of scientists of the University of Granada has developed a new technique of forensic dating based on thermo-microbiology, which will allow to determine more accurately the time of a death which has not occurred under controlled natural conditions or as a consequence of a crime.

This new system, of great interest in the field of criminology, establishes correspondences between the parametres of micro-organic growth on cadaverous remains and dates the time of death of such remains, as well as their relation with their temperature.

The study has been carried out by Professor Isabel Fernández Corcobado and supervised by Professors Miguel Botella López, of the Laboratory of Anthropology of the UGR, and Eulogio Bedmar Gómez of the Zaidín Experimental Station (CSIC). The purpose of the project was to establish the initial methodological basis to create a protocol of general application in the field of Forensic Termography and Microbiology in order to provide new complementary tools to the existing criminalistic techniques.

Such protocol would provide a new criminalictic approach to the traditional techniques already used in the microbiological analysis of samples of all kinds. The researchers report that, in the analysis carried out with this new technique would provide information resulting of the new and fast contrast elements during the criminalistic investigation to the forensic and policial and judicial investigation teams.

To carry out this work, the authors analysed about 240 microorganic samples taken from bodies from the Institute of Legal Medicine of Granada and 352 from living donors.

Higher approach

According to Isabel Fernández, the aim of the research work was to bring criminalistic techniques closer to the analysis of the phenomenons caused during the stages of cadaverous decomposition and putrefaction, in order to reach a better approach to the estimate of the time of death.

They have used new thermographical and weather measurement tools and they have applied traditional microbiological methods with a new approach. The purpose was to make easier the analysis of the stages of cadaverous decomposition and putrefaction, connecting them with the model of growth/death of the micro-organisms, responsible for the post-mortem alterations. The aim of this work, in short, is to establish a microbiological indicator to determine the time of death.

Therefore, scientists have tried an alternative method of approach to the estimated time of death in order to reduce the present margin of error in the application of other different methods and limit to the maximum the moment of death.

The results of this research, which will be extended after its preliminary results in order to definitely validate the method, have been published in the Journal of the Biologists' Association of the Autonomous Region of Madrid.

Isabel Fernández Corcobado | EurekAlert!
Further information:
http://www.ugr.es

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>