Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop a new technique to date forensic death based on corpse microorganisms

16.03.2009
A group of scientists of the University of Granada has developed a new technique of forensic dating based on thermo-microbiology, which will allow to determine more accurately the time of a death which has not occurred under controlled natural conditions or as a consequence of a crime.

This new system, of great interest in the field of criminology, establishes correspondences between the parametres of micro-organic growth on cadaverous remains and dates the time of death of such remains, as well as their relation with their temperature.

The study has been carried out by Professor Isabel Fernández Corcobado and supervised by Professors Miguel Botella López, of the Laboratory of Anthropology of the UGR, and Eulogio Bedmar Gómez of the Zaidín Experimental Station (CSIC). The purpose of the project was to establish the initial methodological basis to create a protocol of general application in the field of Forensic Termography and Microbiology in order to provide new complementary tools to the existing criminalistic techniques.

Such protocol would provide a new criminalictic approach to the traditional techniques already used in the microbiological analysis of samples of all kinds. The researchers report that, in the analysis carried out with this new technique would provide information resulting of the new and fast contrast elements during the criminalistic investigation to the forensic and policial and judicial investigation teams.

To carry out this work, the authors analysed about 240 microorganic samples taken from bodies from the Institute of Legal Medicine of Granada and 352 from living donors.

Higher approach

According to Isabel Fernández, the aim of the research work was to bring criminalistic techniques closer to the analysis of the phenomenons caused during the stages of cadaverous decomposition and putrefaction, in order to reach a better approach to the estimate of the time of death.

They have used new thermographical and weather measurement tools and they have applied traditional microbiological methods with a new approach. The purpose was to make easier the analysis of the stages of cadaverous decomposition and putrefaction, connecting them with the model of growth/death of the micro-organisms, responsible for the post-mortem alterations. The aim of this work, in short, is to establish a microbiological indicator to determine the time of death.

Therefore, scientists have tried an alternative method of approach to the estimated time of death in order to reduce the present margin of error in the application of other different methods and limit to the maximum the moment of death.

The results of this research, which will be extended after its preliminary results in order to definitely validate the method, have been published in the Journal of the Biologists' Association of the Autonomous Region of Madrid.

Isabel Fernández Corcobado | EurekAlert!
Further information:
http://www.ugr.es

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>