Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop a structural approach to exploring DNA

16.03.2009
The new topographical approach reveals that DNA shape is constrained by evolution, and enhances detection of functional regions in the human genome

A team led by researchers from Boston University and the National Institutes of Health has developed a new method for uncovering functional areas of the human genome by studying DNA's three-dimensional structure -- a topographical approach that extends the more familiar analysis of the sequence of the four-letter alphabet of the DNA bases.

Unlike the well-understood genomic sequences that code for proteins and comprise about two percent of the human genome, the remaining 98 percent is the non-coding portion, which encodes many functions. However, little is known about how this functional non-coding information is specified.

In a study which appears today in the online edition of Science, the researchers focused on examining the non-coding regions of the genome for areas that are likely to play a key role in human biological function.

To do this, the researchers developed a method which incorporates information about the structure of DNA to compare sequences of genomes from humans and 36 mammalian species that included the mouse, chimpanzee, elephant and rabbit.

By examining the shapes, grooves, turns and bumps of the DNA that comprises the human genome, the team discovered that 12 percent of the human genome appears to be constrained by evolution. That's double the six percent detected by simply comparing the linear order of DNA nucleotides (A, T, G, and C, the familiar letters that make up the genome). The huge increase stems from finding some DNA sequences that differ in the order of nucleotides, but have very similar topographical shapes, and so may perform similar functions.

They went on to show that the topographically-informed constrained regions correlate with functional non-coding elements better than constrained regions identified by nucleotide sequence alone.

"By considering the three-dimensional structure of DNA, you can better explain the biology of the genome," said Thomas D. Tullius, Boston University professor of chemistry who has spent more than 20 years developing ways to map the structure of the human genome. "For this achievement Stephen Parker, a Boston University graduate student, deserves much of the credit for his development of the algorithm that incorporated DNA structure into evolutionary analysis."

Bringing a molecular biologist's point of view and expertise in comparing the genomes of different species was Elliott Margulies, an investigator at NHGRI's Genomic Technology Branch. "Proteins that influence biological function by binding to DNA recognize more than just the sequence of bases," he said. "These binding proteins also see the surface of the DNA molecule and are looking for a shape that allows a lock-and-key fit."

In their Science paper the researchers also explored how small genetic changes, or variations, known as SNPs (Single Nucleotide Polymorphisms) could prompt structural changes that might lead to disease. In studying these mutations from a database of 734 non-coding SNPs associated with diseases, such as cystic fibrosis, Alzheimer's disease, and heart disease, they found that disease-associated SNPs produced larger changes in the shape of DNA than SNPs not associated with a disease.

The new research findings on evolutionary conservation of DNA structure stem from recent progress in analyzing the functional elements in a representative fraction of the human genome. That study, known as ENCODE (ENCyclopedia of DNA Elements), organized by the National Human Genome Research Institute (NHGRI), challenged the traditional view of the human genetic blueprint as a collection of independent genes. Instead, researchers found a complex network of genes, regulatory elements, and other DNA sequences that do not code for proteins.

The study determined, for the first time, where many types of functional elements are located, how they are organized, and how the genome is pervasively made into RNA. The current research on genome structure and function is based on some of the ENCODE findings, noted Tullius, whose work in developing the new technology was funded through the ENCODE project.

Ronald Rosenberg | EurekAlert!
Further information:
http://www.bu.edu
http://www.genome.gov

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>