Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop a structural approach to exploring DNA

16.03.2009
The new topographical approach reveals that DNA shape is constrained by evolution, and enhances detection of functional regions in the human genome

A team led by researchers from Boston University and the National Institutes of Health has developed a new method for uncovering functional areas of the human genome by studying DNA's three-dimensional structure -- a topographical approach that extends the more familiar analysis of the sequence of the four-letter alphabet of the DNA bases.

Unlike the well-understood genomic sequences that code for proteins and comprise about two percent of the human genome, the remaining 98 percent is the non-coding portion, which encodes many functions. However, little is known about how this functional non-coding information is specified.

In a study which appears today in the online edition of Science, the researchers focused on examining the non-coding regions of the genome for areas that are likely to play a key role in human biological function.

To do this, the researchers developed a method which incorporates information about the structure of DNA to compare sequences of genomes from humans and 36 mammalian species that included the mouse, chimpanzee, elephant and rabbit.

By examining the shapes, grooves, turns and bumps of the DNA that comprises the human genome, the team discovered that 12 percent of the human genome appears to be constrained by evolution. That's double the six percent detected by simply comparing the linear order of DNA nucleotides (A, T, G, and C, the familiar letters that make up the genome). The huge increase stems from finding some DNA sequences that differ in the order of nucleotides, but have very similar topographical shapes, and so may perform similar functions.

They went on to show that the topographically-informed constrained regions correlate with functional non-coding elements better than constrained regions identified by nucleotide sequence alone.

"By considering the three-dimensional structure of DNA, you can better explain the biology of the genome," said Thomas D. Tullius, Boston University professor of chemistry who has spent more than 20 years developing ways to map the structure of the human genome. "For this achievement Stephen Parker, a Boston University graduate student, deserves much of the credit for his development of the algorithm that incorporated DNA structure into evolutionary analysis."

Bringing a molecular biologist's point of view and expertise in comparing the genomes of different species was Elliott Margulies, an investigator at NHGRI's Genomic Technology Branch. "Proteins that influence biological function by binding to DNA recognize more than just the sequence of bases," he said. "These binding proteins also see the surface of the DNA molecule and are looking for a shape that allows a lock-and-key fit."

In their Science paper the researchers also explored how small genetic changes, or variations, known as SNPs (Single Nucleotide Polymorphisms) could prompt structural changes that might lead to disease. In studying these mutations from a database of 734 non-coding SNPs associated with diseases, such as cystic fibrosis, Alzheimer's disease, and heart disease, they found that disease-associated SNPs produced larger changes in the shape of DNA than SNPs not associated with a disease.

The new research findings on evolutionary conservation of DNA structure stem from recent progress in analyzing the functional elements in a representative fraction of the human genome. That study, known as ENCODE (ENCyclopedia of DNA Elements), organized by the National Human Genome Research Institute (NHGRI), challenged the traditional view of the human genetic blueprint as a collection of independent genes. Instead, researchers found a complex network of genes, regulatory elements, and other DNA sequences that do not code for proteins.

The study determined, for the first time, where many types of functional elements are located, how they are organized, and how the genome is pervasively made into RNA. The current research on genome structure and function is based on some of the ENCODE findings, noted Tullius, whose work in developing the new technology was funded through the ENCODE project.

Ronald Rosenberg | EurekAlert!
Further information:
http://www.bu.edu
http://www.genome.gov

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>