Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers determine structure of 'batteries' of the biological clock

Howard Hughes Medical Institute scientists have determined the three-dimensional structure of two proteins that help keep the body's clocks in sync.
The proteins, CLOCK and BMAL1, bind to each other to regulate the activity of thousands of genes whose expression fluctuates throughout the course of a day. Knowing the structure of the CLOCK:BMAL1 complex will help researchers understand the intricacies of how this regulation is carried out and how mutations in each protein lead the biological clock to go awry.

Every 24 hours, millions of 'clocks' inside of our cells reset, helping to tune sleep patterns, blood pressure, and metabolism. When CLOCK and BMAL1 bind to one another inside cells, they initiate the first genetic events that coordinate this 24-hour cycle. "CLOCK and BMAL1 are really the batteries of the biological clock," says HHMI investigator Joseph S. Takahashi of the University of Texas Southwestern Medical Center, whose findings on the CLOCK:BMAL1 structure are published in the May 31, 2012, online version of the journal Science. "They are the key activators of the whole genomic regulation system."

The Clock gene was the first mammalian gene found to contribute to the body's circadian rhythms. Takahashi's team published the initial data on the Clock gene in a series of papers spanning 1994 to 1997. Since then, they've uncovered hundreds to thousands of genes under the control of CLOCK that fluctuate in sync with the biological clock in mammals.

"What's amazing is that we've now found out that almost every cell in your body has a clock," says Takahashi. "Over the past five years, the role of those clocks in peripheral tissues has really come to the forefront."

Researchers studying circadian rhythms have used biochemistry and genetics to piece together rough outlines of how each circadian protein interacts with CLOCK. But until now, they'd never been able to visualize the detailed molecular structure of the CLOCK protein. Seeing such a structure would allow them to visualize how different proteins can bind to CLOCK at the same time, or compete for binding spots, and how mutations known to alter circadian rhythms affect this binding.

Takahashi notes that CLOCK and BMAL1 are part of a large family of proteins, known as bHLH-PAS proteins (a name that refers to both to the shape of the protein and some better known members of the family), involved in functions ranging from responding to environmental contaminants and low-oxygen levels to the creation of new nerve cells. "It's not just CLOCK for which we didn't have a structure," says Takahashi. "This class of protein had never been solved at the crystallographic level before."

Takahashi explained that researchers had struggled to generate circadian proteins in the crystalline form necessary to determine structure using x-ray crystallography, but by experimenting with different conditions, his team was able to purify CLOCK bound to BMAL1. Rather than use the full-length version of each protein, they created a version consisting of only the pieces known to interact with each other. Having shorter proteins made the process easier.

The scientists discovered that CLOCK and BMAL1, when together, are closely intertwined. CLOCK has a groove in the center of its interface that's key to binding. A single amino acid of BMAL1 fits perfectly into the groove. Other proteins that bind to CLOCK likely take advantage of the same spot. Future research will look into the exact positions in which other circadian rhythm proteins bind to the complex, and how mutations to each protein affect the structure.

"Since these are truncated versions of the proteins, what we'd really like to do is to go on to get full-length structures," says Takahashi. They also want to understand how the Cryptochrome and Period proteins that turn off the activity of CLOCK bind to the CLOCK:BMAL1 complex. But that will take time.

Jim Keeley | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>