Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers determine structure of 'batteries' of the biological clock

01.06.2012
Howard Hughes Medical Institute scientists have determined the three-dimensional structure of two proteins that help keep the body's clocks in sync.
The proteins, CLOCK and BMAL1, bind to each other to regulate the activity of thousands of genes whose expression fluctuates throughout the course of a day. Knowing the structure of the CLOCK:BMAL1 complex will help researchers understand the intricacies of how this regulation is carried out and how mutations in each protein lead the biological clock to go awry.

Every 24 hours, millions of 'clocks' inside of our cells reset, helping to tune sleep patterns, blood pressure, and metabolism. When CLOCK and BMAL1 bind to one another inside cells, they initiate the first genetic events that coordinate this 24-hour cycle. "CLOCK and BMAL1 are really the batteries of the biological clock," says HHMI investigator Joseph S. Takahashi of the University of Texas Southwestern Medical Center, whose findings on the CLOCK:BMAL1 structure are published in the May 31, 2012, online version of the journal Science. "They are the key activators of the whole genomic regulation system."

The Clock gene was the first mammalian gene found to contribute to the body's circadian rhythms. Takahashi's team published the initial data on the Clock gene in a series of papers spanning 1994 to 1997. Since then, they've uncovered hundreds to thousands of genes under the control of CLOCK that fluctuate in sync with the biological clock in mammals.

"What's amazing is that we've now found out that almost every cell in your body has a clock," says Takahashi. "Over the past five years, the role of those clocks in peripheral tissues has really come to the forefront."

Researchers studying circadian rhythms have used biochemistry and genetics to piece together rough outlines of how each circadian protein interacts with CLOCK. But until now, they'd never been able to visualize the detailed molecular structure of the CLOCK protein. Seeing such a structure would allow them to visualize how different proteins can bind to CLOCK at the same time, or compete for binding spots, and how mutations known to alter circadian rhythms affect this binding.

Takahashi notes that CLOCK and BMAL1 are part of a large family of proteins, known as bHLH-PAS proteins (a name that refers to both to the shape of the protein and some better known members of the family), involved in functions ranging from responding to environmental contaminants and low-oxygen levels to the creation of new nerve cells. "It's not just CLOCK for which we didn't have a structure," says Takahashi. "This class of protein had never been solved at the crystallographic level before."

Takahashi explained that researchers had struggled to generate circadian proteins in the crystalline form necessary to determine structure using x-ray crystallography, but by experimenting with different conditions, his team was able to purify CLOCK bound to BMAL1. Rather than use the full-length version of each protein, they created a version consisting of only the pieces known to interact with each other. Having shorter proteins made the process easier.

The scientists discovered that CLOCK and BMAL1, when together, are closely intertwined. CLOCK has a groove in the center of its interface that's key to binding. A single amino acid of BMAL1 fits perfectly into the groove. Other proteins that bind to CLOCK likely take advantage of the same spot. Future research will look into the exact positions in which other circadian rhythm proteins bind to the complex, and how mutations to each protein affect the structure.

"Since these are truncated versions of the proteins, what we'd really like to do is to go on to get full-length structures," says Takahashi. They also want to understand how the Cryptochrome and Period proteins that turn off the activity of CLOCK bind to the CLOCK:BMAL1 complex. But that will take time.

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>