Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers describe structures, mechanisms that enable bacteria to resist antibiotics

01.08.2017

Two new discoveries from Edward Yu's Iowa State University laboratory are adding to the scientific understanding of how bacteria resist antibiotics.

Yu and his research group have just described two structures and mechanisms - efflux pumps and reinforced cell walls - that certain disease-causing bacteria use to keep antibiotics away. That understanding could one day lead to new treatments that disable the structures and restore the effectiveness of drugs.


This is a ribbon diagram of the three-part efflux pump of the Campylobacter jejuni bacterium.

Credit: Edward Yu/Iowa State University

"We study a lot of efflux pumps to understand antibiotic resistance," said Yu, an Iowa State professor with appointments in physics and astronomy; chemistry; biochemistry, biophysics and molecular biology; and the U.S. Department of Energy's Ames Laboratory. "Cell wall remodeling is also a major mechanism to work against antibacterial drugs.

"The structure and mechanism depend on the bacteria you're talking about - and the bacteria will find a way."

Two journals have just published the latest findings by Yu's research group:

  1. A paper published online by Nature Communications describes how the Campylobacter jejuni bacterium, which causes a digestive tract inflammation (enterocolitis) and associated diarrhea, uses a three-molecule efflux pump to extrude antibacterial drugs. The project is a collaboration of Yu; Yeon-Kyun Shin, Iowa State's Roy J. Carver Professor of Biochemistry, Biophysics and Molecular Biology; and Qijing Zhang, an Iowa State associate dean of veterinary medicine and the Dr. Frank K. Ramsey Endowed Chair in Veterinary Research. Chih-Chia "Jack" Su, an Iowa State associate scientist; Linxiang Yin, an Iowa State graduate student; and Nitin Kumar, an Iowa State doctoral student; are first authors.

     

    Previous studies reported the three molecules of the pump worked in a synchronized rotation - one molecule accessing, one molecule binding and one molecule extruding - to pump antibiotics from the cell. Yu's research group found that each part of the pump worked independently of the others, essentially creating three pumps in one structure.

    "The three independent pumps make it a more powerful multidrug efflux pump," Yu said.

     

  2. A paper published online by the Proceedings of the National Academy of Sciences Early Edition describes how the Burkholderia multivorans bacterium, which can cause pneumonia in people with immune deficiencies or lung diseases such as cystic fibrosis, is able to remodel and strengthen its cell wall, closing the door to a range of antimicrobial drugs. Kumar and Su are first authors.

     

    The paper focuses on how these bacteria transport hopanoid lipid compounds to their outer cell membranes. The compounds contribute to membrane stability and stiffness.

"Overall our data suggest a novel mechanism for hopanoid transport involved in cell wall remodeling, which is critical for mediating multidrug resistance in Burkholderia," the authors wrote in a project summary.

Grants from the National Institutes of Health supported both studies. Grants from the U.S. Department of Energy also supported ultra-bright, high-energy X-ray experiments at the Advanced Photon Source at Argonne National Laboratory in Illinois.

Yu and his research group have a long history of successfully using X-ray crystallography to describe and understand the structure of pumps, transporters and regulators in bacteria. A gallery on his research group's website shows ribbon diagrams of 21 different structures.

Because of Yu's significant contribution to the understanding of antimicrobial resistance in bacteria, the American Academy of Microbiology elected him to be an academy fellow earlier this year.

With that comprehensive understanding of the structures and mechanisms behind bacterial resistance to antibiotics, Yu said his research group is beginning to look at how the pumps and transporters can be turned off.

"We're trying to find an inhibitor compound," Yu said. "We're thinking about doing a little more translational science. We have a lot of rich information about the structure and function of these pumps. Why not use it?"

Media Contact

Edward Yu
ewyu@iastate.edu
515-294-4955

 @IowaStateUNews

http://www.iastate.edu 

Edward Yu | EurekAlert!

Further reports about: antibacterial drugs antibiotics bacteria bacterium drugs pump

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>